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Abstract: We introduce a non-unital and non-commutative ring Sm(F1), called

ring of ordered sum over F2, the binary field. We discuss linear codes over this ring,

also known as Sm-codes, and their algebraic structure, particularly, their residue and

torsion codes. We explore the generalized notion of duality of Sm-codes.
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1 INTRODUCTION

Self-dual codes and self-orthogonal codes, and conse-
quently, Type IV codes, which are self-dual codes where
all the codewords have even weight, have been studied
extensively for their vast applications. Many examples
of these types of codes have good parameters. Classi-
cally, these codes are defined over finite fields. Recently,
there have been great interest in codes over finite rings.
However, these rings are often commutative, and most
of the time, unital [?, ?, ?]. If the ring is noncommuta-
tive and without the unity, the usual notion of duality as
in finite fields and other commutative rings [?, ?] have
to be reconsidered. In particular, left and right duals
need to be defined, as in quasi-self dual (QSD) codes.

In this paper, we introduce the ring Sm(F2), called
the ring of ordered sum over the binary field F2, defined
as

Sm(F2) = {(a1, a2 . . . , am)|a1, a2 . . . , am ∈ F2}

together with the following binary operations, addition
and multiplication respectively,

(a1, . . . , am) + (b1, . . . , bm) = (a1 + b1, . . . , am + bm),

(a1, . . . , am) · (b1, . . . , bm) =

(
a1

m∑
i=1

bi, . . . , am

m∑
i=1

bi

)
.

We call linear codes over this ring simply as Sm-codes.
We will redefine the notion of duality of Sm-codes. More-
over, for an Sm-code C, we associate binary codes called
residue and ith torsion, for i = 1, 2, . . . ,m− 1. We then
study the structure of QSD codes of length n, defined
as self-orthogonal codes of size 2

mn
2 and Type IV codes,

defined as QSD codes with all codewords of even Ham-
ming weight, in terms of their residue and torsion codes.
The conditions for the existence of these codes will be
given.

2 PRELIMINARIES

2.1 THE RING Sm(F2)

In this section, we give some basic properties of the
ring Sm(F2).

Theorem 1. Let

Om(F2) = {(a1, a2, . . . , am) ∈ Sm(F2) |
m∑
i=1

ai = 0}.

Then Om(F2) is a commutative ideal of Sm(F2) and
Sm(F2)/Om(F2) ∼= F2.

The ideals of Sm(F2) can be characterized as follows.

Proposition 1. For positive integer m, Sm(F2) has
ideal Ji of size 2m−i for all i = 0, 1, . . . ,m and

Jm ⊆ Jm−1 ⊆ · · · ⊆ J1 ⊆ J0,

where Jm = {0}, Jm−1 = {0, cm−1}, J1 = Om(F2) and
J0 = Sm(F2).

As a consequence of the proof of Proposition 1, we
can write every element of Sm(F2) in a certain form.

Corollary 1. Let ci ∈ Ji \ Ji+1 for i = 0, 2, . . . ,m − 1
with J0 = Sm(F2). Then any element of Sm(F2) can be
written in the form

β0c0 + β1c1 + . . .+ βm−1cm−1,

where βi ∈ F2.

2.2 CODES OVER Sm(F2)

A (linear) Sm-code of length n is a one-sided Sm(F2)-
submodule of Sm(F2)n. Two Sm-codes are permuta-
tion equivalent if there is a permutation of coordinates
that maps one to the other.
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The number of nonzero coordinates of a vector x ∈
Sm(F2)n is called its (Hamming) weight denoted by
wt(x). The (Hamming) distance d(x,y) between two
vectors x,y ∈ Sm(F2)n is defined as d(x,y) = wt(x−y).
The minimum distance of an Sm-code C is

d(C) = min {d(x,y)|x,y ∈ C,x 6= y}
= min {wt(c) | c ∈ C, c 6= 0} .

We endow Sm(F2)n with the usual inner product

x · y =

n∑
i=1

xiyi

where x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Sm(F2)n.
Let C be an Sm-code. The right dual of C is the right
module defined as

C⊥R = {y ∈ Sm(F2)n | ∀x ∈ C,x · y = 0} ,

and the left dual of C is the left module defined as

C⊥L = {y ∈ Sm(F2)n | ∀x ∈ C,y · x = 0} .

The two-sided dual of C, denoted by C⊥ is defined
as C⊥ = C⊥R ∩ C⊥L . A code is left self-dual (resp.
right self-dual) if it is equal to its left dual, i.e., C⊥L = C
(resp. right dual, i.e., C⊥R = C). A code C is self-dual
if C = C⊥ and self-orthogonal if C ⊆ C⊥.

An Sm code C of length n is left nice (resp. right
nice) if |C|

∣∣C⊥L
∣∣ = 2mn (resp. |C|

∣∣C⊥R
∣∣ = 2mn).

Moreover, it is called quasi self-dual (QSD) if it is
self-orthogonal and of size 2

mn
2 . A quasi self-dual code

with all Hamming weights even is called a Type IV
code.

Define the map of reduction modulo Om(F2) as the
map α : Sm(F2) → F2 given by α((a1, a2, . . . , am)) =∑m

i=1 ai. This map can be extended naturally to a map
from Sm(F2)n to Fn

2 . For an Sm-code C, we associate
two binary codes:

1. the residue code defined by res(C) = {α(y) |y ∈
C}, and

2. the ith torsion code for i ∈ {1, 2, . . . ,m − 1}
defined by

tori(C) = {x ∈ Fn
2 | cix ∈ C},

where c0, c1, . . . , cm−1 are fixed such that c0 ∈ Sm(F2) \
Om(F2), ci ∈ Om(F2), i 6= 0.

Lemma 1. Let C be an Sm-code. Then every codeword
c ∈ C can be written as

c = c0x0 + c1x1 + . . .+ cm−1xm−1,

where x0 ∈ res(C) and xi ∈ Fn
2 . Moreover, res(C) ⊆

tori(C) for 1 ≤ i ≤ m− 2.

3 SELF-ORTHOGOGNAL ANDQSD Sm-
CODES

We start with a generalized construction of Sm-codes.

Theorem 2. Let Bi’s be linear codes over F2 such that
B0 ⊆ Bi ⊆ B⊥0 for 0 ≤ i ≤ m − 1, where B0 is self-
orthogonal binary code of length n, and |Bi| = 2ri such
that r0 + r1 + . . .+ rm−1 = mn

2 . The code C defined by

C = c0B0 + c1B1 + . . .+ cm−2Bm−2 + cm−1Bm−1,

is a quasi self-dual code. Its residue code is res(C) = B0

and torsion codes tori(C) = Bi.

Thus, we can write an Sm-code as a direct sum as
follows.

Corollary 2. If C is a linear code over Sm(F2), then

C = c0B0 ⊕ c1B1 ⊕ · · · ⊕ cm−1Bm−1,

where B0 = res(C) and Bi = tori(C) for i = 1, 2, . . . ,m−
1.

Note that we can choose the ri’s such that r0 ≤
ri−1 ≤ ri for all i = 1, 2, . . . ,m− 1.

Corollary 3. If Bi are binary codes for i = 0, 1, . . . ,m−
1 such that B0 ⊆ Bi for all i, then there exist an Sm-code
C with residue code B0 and tori(C) = Bi. Furthermore,
if B0 is self-orthogonal and Bi ⊆ B⊥0 for all i, then C
is self-orthogonal. Moreover, r0 + r1 + . . .+ rm−1 = mn

2
where |Bi| = 2ri for 0 ≤ i ≤ m − 1 then C is quasi
self-dual code.

The next result characterizes the residue and torsion
codes of self-orthogonal Sm-codes.

Lemma 2. For all self-orthogonal Sm-linear codes C
we have

1. res(C) ⊆ res(C)⊥;

2. tori(C) ⊆ res(C)⊥;

3. torm−1(C) = res(C)⊥ if C is QSD and the se-
quence r0, r1, r2, . . . , rm−1 is an arithmetic pro-
gression.

Corollary 4. Let C be an Sm-code of length n. Then
C is QSD if and only if tori(C) ⊆ res(C)⊥ for all i and
r0 + . . .+ rm−1 = mn

2 .

Theorem 3. Let C be an Sm-code of order n such that
C is QSD and m is even. If there exists l ∈ Z such that
the sequence rm

2
, . . . , rm−1 is the same sequence as r0 +

l, . . . , rm
2 −1 + l and rm

2 −1 + rm
2

= n, then torm−1(C) =

res(C)⊥.

We have an analog of Lemma 2 for QSD Sm-codes.
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Theorem 4. For all quasi self-dual Sm-linear codes C
we have

1. res(C) ⊆ res(C)⊥;

2. torm−1(C) ⊆ res(C)⊥ (if m = 2, torm−1(C) =
res(C)⊥);

3. if C is of type {k0, . . . , km−1}, then

mk0 + (m− 1)k1 + . . .+ 2km−2 + km−1 =
mn

2
.

Moreover, if m ≥ 3, res(C) is self-dual if and only if C
is Type IV.

As a consequence, we have the following construction
of Type IV codes.

Corollary 5. If C = c0B+c1B+. . .+cm−1B, such that
B is binary self-dual code, then C is a Type IV code.

Finally, we end this section with the general notion
of duality of Sm-codes.

Theorem 5. If C is an Sm-code, then the following
hold.

1. res(C⊥L) = tori(C
⊥L) = res(C)⊥ for all i =

1, 2, . . . ,m− 1

2. res(C⊥R) =
⋂m−1

i=1 tori(C)⊥

3. tori(C
⊥R) = Fn

2 for all i = 1, 2, . . . ,m− 1

We illustrate all these results in the following exam-
ple.

Example 1. Let C = c0
(
0 0

)
+c1

(
1 1

)
+c2

(
1 0
0 1

)
.

Note that |C| = 23 and res(C) ⊆ tori(C) ⊆ res(C)⊥ for
i = 1, 2 which means C is quasi self-dual. Observe that

C⊥R = c0
(
0 0

)
+ c1

(
1 0
0 1

)
+ c2

(
1 0
0 1

)
since tor1(C)⊥ =

(
1 1

)⊥
=
(
1 1

)
and tor2(C)⊥ =(

1 0
0 1

)⊥
=
(
0 0

)
. Thus,

res(C⊥R) = tor1(C) ∩ tor2(C) =
(
0 0

)
and we have

C⊥L = c0

(
1 0
0 1

)
+ c1

(
1 0
0 1

)
+ c2

(
1 0
0 1

)
since res(C⊥L) = tori(C

⊥L) = res(C)⊥ =
(
0 0

)⊥
=(

1 0
0 1

)
. Therefore,

C⊥ = C⊥R∩C⊥L = c0
(
0 0

)
+c1

(
1 0
0 1

)
+c2

(
1 0
0 1

)
,

which means |C| ·
∣∣C⊥∣∣ = 23 · 24 = 27 6= 26 and hence,

C is not nice, that is, C is not self-dual.

3.1 CONCLUSION

The ring Sm(F2) is a relatively new ring, which may
generalize some known rings. More properties of this
ring needs to be explored, especially its application to
coding theory and other fields. Future work in codes
over this ring includes formulation of more examples for
longer length and larger finite fields or other rings in the
list of [?]. A complete classification of self-orthogonal,
self-dual and QSD Sn-codes for some n will also be valu-
able work in the future. This can be accomplished using
a mass formula, similar to what was done in other rings.
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