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Chapter 1

Systems of Linear Equation

One of the most frequently recurring practical problems in many �elds of study such as mathematics,
physics, biology, chemistry, economics, all phases of engineering, operations research, and the social science
is that of solving a system of linear equations.

A linear equation is of the form a1x1 + a2x2 + · · · + anxn = b, where xi's are unknowns and
ai's are real or complex numbers. A solution to this linear equation is a sequence < sn > of n
numbers s1, s2, . . . , sn such that xi = si for each i.

Linear Equation

EXAMPLE 1. Consider the linear equation 6x1 − 3x2 + 4x3 = −13. Set x1 = 2, x2 = 3, x3 = −4. Then

6x1 − 3x2 + 4x3 = 6(2)− 3(3) + 4(−4) = −13.

This means that x1 = 2, x2 = 3, x3 = −4 is a solution to the given linear equation.

A system of m linear equations in n unknowns or a linear system is a set of m linear
equations each in n unknowns. A linear system is of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

System of Linear Equations

1



2 CHAPTER 1. SYSTEMS OF LINEAR EQUATION

A solution to a linear system is a sequence < sn > of n numbers such that each linear equations is satis�ed
when xi = si for each i.

If a linear system has no solution, then it is said to be inconsistent.

If it has a solution, then it is called consistent.

If bi = 0 for each i in each linear equation in a linear system, then the linear system is called a homoge-
neous system.

Remark: If xi = 0 for each i in a homogeneous linear system, then the system is satis�ed. This solution
is called a trivial solution.

A sequence < sn > is a nontrivial solution to a homogeneous linear system if si 6= 0 for all i.

Two linear systems are equivalent if they both have exactly the same solutions.

EXAMPLE 2. The linear systems

x1 − 3x2 = −7
2x1 + x2 = 7

and

8x1 − 3x2 = 7

3x1 − 2x2 = 0

10x1 − 2x2 = 14

are equivalent. They both have x1 = 2 and x2 = 3 as a solution.
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NAME:

1. Solve the given linear system by method of elimination.

x+ 2y = 8

3x− 4y = 4

2. Given a linear system

2x− y = 5

4x− 2y = t

(a) Determine a particular value of t so that the system is consistent.

(b) Determine a particular value of t so that the system is inconsistent.
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Another method to solve the solution of a linear system is through the use of matrices.

An m×nmatrix A is a rectangular array of mn real or complex numbers arranged in m horizontal
rows and n vertical columns.

De�nition of a Matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



If m = n, we sya that A is a square matrix of order n.
The numbers a11, a22, · · · , ann form the main diagonal of A.

Square Matrix

Notation for a matrix: A = [aij ], where aij is the entry of A in the ith row and jth column.

EXAMPLE 3.

A =

 1 2 3
2 −1 1
3 0 −1


A is a 3× 3 matrix or a square matrix of order 3, a23 = 1,

Diagonal entries are a11 = 1, a22 = −1, a33 = −1

An n× 1 matrix is called an n-vector.

n-Vector

We will discuss more of vectors on later part of this course.

EXAMPLE 4.

~u =

 1
2
3


is a 3-vector.

The set of all n-vectors with real entries is denoted by Rn, i.e,

Rn = {~u | ~u is an n-vector with real entries}.

An n-vector whose entries are all zero is called a zero vector and is denoted by ~0.
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Two m× n matrices A = [aij ] and B = [bij ] are equal if aij = bij for all i and j.

Equal Matrices

EXAMPLE 5.

A =

 1 2 3
2 −1 4
3 0 −1


and

B =

 x 2 3
2 −1 y
3 0 −1


are equal if x = 1 and y = 4.

1.1 Matrix Operations

If A = [aij ] and B = [bij ] are both m × n matrices, then the sum A + B is an m × n matrix
C = [cij ] de�ned by cij = aij + bij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Sum of Matrices

EXAMPLE 6.

 1 2 3
2 −1 4
3 0 −1

 +

 1 −2 3
3 1 4
3 1 −1

=
 2 0 6

5 0 8
6 1 −2



If A = [aij ] is an m×n matrix and r is a real number, then the scalar multiple of A by r, denoted
by rA, is the m× n matrix C = [cij ], such that cij = raij , for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Scalar Multiple of Matrices

EXAMPLE 7. 2

 1 2 3
2 −1 4
3 0 −1

=
 2 4 6

4 −2 8
6 0 −2



If A and B are m×n matrices, we write A+(−1)B = A−B. We call this the di�erence between
A and B.

Di�erence of Matrices
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EXAMPLE 8.

 1 2 3
2 −1 4
3 0 −1

 -

 1 −2 3
3 1 4
3 1 −1

=
 0 4 0

1 −2 0
0 −1 0



Let ~a =


a1
a2
...
an

 and ~b =


b1
b2
...
bn

 be n-vectors in Rn.

The dot product or inner product of vectors ~a and ~b is de�ned as

~a ·~b =
n∑

i=1

aibi

Dot Product

EXAMPLE 9. The dot product of ~a =


1
−3
4
3

 and ~b =


2
3
1
−2

 is

~a ·~b = 1(2) + (−3)(3) + 4(1) + 3(−2) = −9.

If A = [aij ] is an m × p matrix and B = [bij ] is an p × n matrix, then the product of A and B,
denoted by AB, is the matrix C = [cij ] de�ned by

cij =

p∑
i=1

aikbkj

Product of Matrices

EXAMPLE 10. If A =

[
1 2 −1
3 1 4

]
and B =

 −2 5
4 −3
2 1

, then AB =

[
4 −2
6 16

]

REMARK:

Matrix multiplication is not commutative. To see this, let A =

[
1 2
−1 3

]
and B =

[
2 1
0 1

]
. Then

AB =

[
2 3
−2 2

]
and BA =

[
1 7
−1 3

]
. This means that AB 6= BA.
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If A = [aij ] is an m × p matrix, then the transpose of A, denoted by AT = [aTij ], is the n ×m

matrix de�ned by aTij = aji.

Transpose of a Matrix

EXAMPLE 11. If A =

[
1 2 −1
3 1 4

]
then AT =

 1 3
1 1
−1 4



EXAMPLE 12. Let A =

 1 −2 3
4 2 1
0 1 −2

 and B =

 1 4
3 −1
−2 2

.
Compute the (3, 2) entry of AB.

Note that if AB = C, then the (3, 2) entry of AB is c32. This is (row3(A))
T · col2(B). Thus, (row3(A))T ·

col2(B) =

 0
1
−2

·
 4
−1
2

 = −5
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NAME:

1. Prove: If ~u and ~v are n-vectors, then [~u · ~v] = (~u)T~v.

2. Let A =

 3 2 3
4 7 1
8 1 −2

 and B =

 7 4
3 5
2 2

.
Compute the (3, 1) entry of AB.
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NAME:

Let A =

 1 2 4
2 2 1
5 −1 −2

, B =

 −1 1 2
3 1 2
2 0 1

, C =

 −2 0 1
5 4 2
3 2 1

, ~u =

 −12
4

, ~v =

 0
3
2



1. Perform the following operations(if possible):

(a) A+B

(b) 2(A− C)

(c) (AB)T

(d) ~u · ~v
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Now we transform a given linear system to a matrix form. Consider the linear system of m equations and
n unknowns.

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

Set A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

, ~x =


x1
x2
...
xn

, ~b =


b1
b2
...
bm


Then

A~x =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn




x1
x2
...

xm



=


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
...

...
am1x1 + am2x2 + · · ·+ amnxn



Observe that the entries of A~x are the left side of the equations of the linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

Thus, we can express

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

as A~x = ~b.
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The matrix A is called the coe�cient matrix of the linear system and the matrix
a11 a12 · · · a1n | b1
a21 a22 · · · a2n | b2
...

...
... |

...
am1 am2 · · · amn | bm


is called the augmented matrix of the linear system.

REMARK:

A homogeneous linear system can be written as A~x = ~0.

EXAMPLE 13. Consider the linear system

−5x+ z = 0

x+ 2y − 4z = 7

3x− 2y + z = 3

Setting A =

 −5 0 1
1 2 −4
3 −2 1

, ~x =

 x
y
z

, and ~b =

 0
7
3

,
we can express the given linear system as A~x = ~b.
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NAME:

Consider the linear system

x+ y + 2z = −1
x− 2y + 2z = −5
3x+ y + z = 3

Determine the coe�cient matrix of the given linear system and express this in matrix form.



Chapter 2

Algebraic Properties of Matrix Operations

2.1 Properties of Matrix Operations

We now consider the properties of matrix operations. We observe here that some properties of matrix
operations behave di�erently when compared to the operations on the set of real numbers.

THEOREM 1. Let A,B,C be m× n matrices. Then

1. A+B = B +A

2. A+ (B + C) = (A+B) + C

3. There exists a unique m× n matrix O such that A+O = A for any m× n matrix A. Here,
matrix O is called the m× n zero matrix.

4. For all m × n matrix A, there exists a unique m × n matrix D such that A + D = O. In
this case, we write D = −A. The matrix −A is called the negative of A and note that
−A = (−1)A.

Properties of Matrices under Addition

Proof:

1 Let A = [aij ], B = [bij ], A+B = C = [cij ], and B +A = D = [dij ].
We claim that cij = dij for all i, j.
Now, cij = aij + bij and dij = bij +aij for all i, j. Because aij , bij ∈ R, commutativity under addition
holds so that aij + bij = bij + aij . This implies that cij = dij . This proves the claim. Consequently,
A+B = B +A.

2 Let
A = [aij ], B = [bij ], C = [cij ], B + C = D = [dij ], A+B = E = [eij ],

13



14 CHAPTER 2. ALGEBRAIC PROPERTIES OF MATRIX OPERATIONS

A+ (B + C) = F = [fij ], (A+B) + C = G = [gij ].

We show that fij = gij for all i, j.

Now, dij = bij + cij and eij = aij + bij . It follows that

fij = aij + dij

= aij + (bij + cij)

= (aij + bij) + cij (since R is associative under usual addition)

= gij .

Therefore, A+ (B + C) = (A+B) + C.

The proofs for 3 and 4 will be left as an exercise. �

THEOREM 2. If A,B,C are matrices of appropriate sizes, then

1. A(BC) = (AB)C

2. (A+B)C = AC +BC

3. C(A+B) = CA+ CB

Properties of Matrices under Multiplication

Proof:

1 Suppose that A is m × n, B is n × p, and C is p × q. Let A = [aij ], B = [bij ], C = [cij ], AB = D =
[dij ], BC = E = [eij ], (AB)C = F = [fij ], and A(BC) = G = [gij ]. We will show that fij = gij for
all i, j. Now,

fij =

p∑
k=1

dikckj =

p∑
k=1

(
n∑

r=1

airbrk

)
ckj .

Thus,

fij =

p∑
k=1

(
n∑

r=1

airbrk

)
ckj

=

p∑
k=1

(ai1b1k + · · ·+ ainbnk) ckj

= ai1

p∑
k=1

b1kckj + · · ·+ ain

p∑
k=1

bnkckj

=

n∑
r=1

air

(
p∑

k=1

brkckj

)
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Similarly,

gij =

n∑
r=1

airerj =

n∑
k=1

air

(
p∑

k=1

brkckj

)
.

The proofs for 2 and 3 are left as an exercise.�

THEOREM 3. If r and s are real numbers and A and B are matrices of the appropriate sizes,
then

1. r(sA) = (rs)A

2. (r + s)A = rA+ sA

3. r(A+B) = rA+ rB

4. A(rB) = r(AB) = (rA)B

Properties of Scalar Multiplication

THEOREM 4. If r is a scalar and A and B are matrices of the appropriate sizes, then

1. (AT )T = A

2. (A+B)T = AT +BT

3. (AB)T = BTAT

4. (rA)T = rAT

Properties of Transpose
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2.2 Special Types of Matrices

An n× n matrix A = [aij ] is called a diagonal matrix if aij = 0 for i 6= j.
A scalar matrix is a diagonal matrix whose diagonal entries are equal.
In particular, the scalar matrix whose diagonal entries are all equal to 1 is called the identity
matrix.

Diagonal, Scalar, and Identity Matrix

EXAMPLE 14. Diagonal matrix:

A =

 2 0 0
0 −1 0
0 0 −1


Scalar matrix:

B =

 2 0 0
0 2 0
0 0 2


Identity matrix:

I3 =

 1 0 0
0 1 0
0 0 1


Remarks:

1. If A is any n× n matrix, then AIn = A and InA = A.

2. If A is a scalar matrix, then there exists r ∈ R such that A = rIn.

We now de�ne a similar concept of exponents in matrices.

Let A be a square matrix. The powers of a matrix, for p a positive integer, is de�ned as Ap = A ·A · · ·A︸ ︷︷ ︸
p factors

.

If A is n× n, we de�ne A0 = In.

For nonnegative integers p and q, the following can be shown:

1. ApAq = Ap+q

2. (Ap)q = Apq

Some Results about the Powers of a Matrix
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Remark:

The equality (AB)p = ApBp need not be true except when AB = BA. (Why?)

An n × n matrix A = [aij ] is called upper triangular if aij = 0 for i > j and called lower
triangular if aij = 0 for i < j.

Upper and Lower Triangular Matrices

EXAMPLE 15. Upper triangular matrix:

A =

 2 3 4
0 −1 3
0 0 −1


Lower triangular matrix:

B =

 2 0 0
3 4 0
5 2 1


QUESTIONS:

1. Can upper triangular matrix be a lower triangular matrix? ANSWER:

2. Is it possible for a lower triangular matrix be upper triangular? ANSWER:

3. Is it possible for a matrix to be both upper triangular and lower triangular? ANSWER:

Some other special types of matrices:

A matrix A with real entries is called symmetric if AT = A.
A matrix A with real entries is skew symmetric if AT = −A.

Symmetric and Skew Symmetric Matrices

EXAMPLE 16. Symmetric matrix:

A =

 1 2 3
2 −1 3
3 3 −1


Skew symmetric matrix:

B =

 0 2 3
−2 0 −4
−3 4 0


Remarks:



18 CHAPTER 2. ALGEBRAIC PROPERTIES OF MATRIX OPERATIONS

1. If A is symmetric or skew symmetric, then A is a square matrix.

2. If A is a symmetric matrix, then the entries of A are symmetric with respect to the main diagonal of
A.

3. A is symmetric if and only if aij = aji.

4. A is skew symmetric if and only if aij = −aji.

5. If A is skew symmetric, the entries of the main diagonal of A are all zero.

ASSIGNMENT:

Each item is worth 10 points. Use short bondpaper.

Prove the following:

1. Show that if A is a symmetric matrix, then AT is symmetric.

2. Show that if A is any m× n matrix, then AAT and ATA are symmetric.

3. Show that if A is any n× n matrix, then A+AT is symmetric.

4. Show that if A is any n× n matrix, then A−AT skew symmetric.

5. Let A and B be symmetric matrices. Show that A+B is symmetric.

6. Let A and B be symmetric matrices.Show that A+B is symmetric if and only if AB = BA.



Chapter 3

Nonsingular Matrices

3.1 Nonsingular Matrices

Another special type of a matrix corresponds to the reciprocal of a nonzero real number.

An n × n matrix A is called nonsingular or invertible if there exist an n × n matrix B such
that AB = BA = In. This matrix B is called an inverse of A. Otherwise, A is called singular or
noninvertible.

Nonsingular Matrices

THEOREM 5. The inverse of a matrix, if there is, is unique.

Theorem

Proof: Suppose that B and C are inverses of a matrix A. Then by de�nition, AB = BA = In and
AC = CA = In. It follows that

B = BIn

= B(AC)

= (BA)C

= InC

= C

This shows that the inverse of a matrix, if it exists, is unique. �

NOTATION: Because the inverse of a matrix is unique, we denote the inverse of A as A−1.

19
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NAME:

Let

A =

[
1 2
2 −1

]
Compute A−1.
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THEOREM 6.

1. If A and B are both nonsingular n× n matrices, then AB is nonsingular and

(AB)−1 = B−1A−1.

2. If A1, A2, . . . , Ar are n× n nonsingular matrices, then A1A2 . . . Ar is nonsingular and

(A1A2 . . . Ar)
−1 = A−1r A−1r−1 . . . A

−1
1 .

3. If A is a nonsingular matrix, then A−1 is nonsingular and (A−1)−1 = A.

4. If A is a nonsingular matrix, then AT is nonsingular and (A−1)T = (AT )−1.

Inverse of the Product, Inverse, and Transpose of Matrices

Proof:

1 Note that

(AB)(B−1A−1) = A(BB−1)A−1

= (AIn)A
−1

= AA−1

= In.

Similarly, (B−1A−1)(AB) = In. This means that AB is nonsingular. By previous theorem, the
inverse of a matrix is unique, so (AB)−1 = B−1A−1.

The proofs for 2, 3 and 4 will be left as an exercise. �

ASSIGNMENT:

Each item is worth 10 points. Use short bondpaper.

Prove the following:

1. Show that if AB = AC and A is nonsingular, then B = C.

2. Show that if A is nonsingular and AB = O for n× n matrix B, then B = O.

3. Let A =

[
a b
c d

]
. Show that A is nonsingular if and only if ad− bc 6= 0.

4. Consider the homogeneous system Ax = 0, where A is n×n. If A is nonsingular, show that the only
solution is the trivial one, x = 0.

5. Prove that if A is symmetric and nonsingular, then A−1 is symmetric.



Chapter 4

Echelon Form of a Matrix

4.1 Echelon Form of a Matrix

This chpater introduces other operations on a matrix that will help in solving for a solution of a linear
system

Consider this de�nition.

An m× n matrix A is said to be in reduced row echelon form if it satis�es the following:

1. All zero rows, if it exists, appear at the bottom of the matrix.

2. The �rst nonzero entry from the left of a nonzero row is a 1. This is called the leading one
of its row.

3. For each nonzero row, the leading one appears to the right and below any leading ones in the
preceding rows.

4. If a column contains a leading one, then all other entries in that column are zero.

Reduced Row Echelon Form

An m× n matrix satisfying only the properties 1, 2, and 3 is said to be in row echelon form.

We can formulate similar de�nition for reduced column echelon form and column echelon form.

EXAMPLE 17. Given

A =

 1 0 0
0 1 0
0 0 1


22
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QUESTION: Is A in reduced row echelon form? row echelon form? ANSWER:

EXAMPLE 18. Given

B =

 1 0 2
0 1 1
0 0 1


QUESTION: Is B in reduced row echelon form? row echelon form? ANSWER:

EXAMPLE 19. Given

C =

 1 0 2
0 1 1
0 0 0


QUESTION: Is C in reduced row echelon form? row echelon form? ANSWER:

EXAMPLE 20. Given

D =

 1 2 0 4
0 0 0 0
0 0 1 −3


QUESTION: Is D in reduced row echelon form? row echelon form? ANSWER:

EXAMPLE 21. Given

E =

 1 0 3 4
0 2 −2 5
0 0 1 2


QUESTION: Is E in reduced row echelon form? row echelon form? ANSWER:

EXAMPLE 22. Given

F =


1 5 0 2 −2 4
0 1 0 3 4 8
0 0 0 1 7 −2
0 0 0 0 0 0
0 0 0 0 0 0


QUESTION: Is F in reduced row echelon form? row echelon form? ANSWER:

QUESTIONS:

Are all matrices in its reduced row echelon form also in row echelon? ANSWER:

All all matrices in row echelon form also in reduced row echelon form? ANSWER:

We now show that every matrix can be transformed into row (column) echelon form or into reduced row
(column) echelon form by row (column operations.
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An elementary row (column) operation on a matrix A is any one of the following operations:

1. Type I: Interchange any teo rows (columns).

2. Type II: Multiply a row (column) by a nonzero constant.

3. Type III: Add a multiple of one row (column) to another.

Elementary Row(Column) Operations

NOTATIONS:

Type I: ri ↔ rj

Type II: kri → ri

Type III: kri + rj → rj

Let

A =

 0 0 1 2
2 3 0 −2
3 3 6 9


Then

B = Ar1↔r3 =

 3 3 6 9
2 3 0 −2
0 0 1 2

 ,

C = A 1
3
r3→r3

=

 0 0 1 2
2 3 0 −2
1 1 2 −3


and

D = A−2r2+r3→r3 =

 0 0 1 2
2 3 0 −2
−1 −3 6 −5



An m × n matrix B is said to be row (column) equivalent to an m × n matrix A if B can be
produced by applying a �nite sequence of elementary row (column) operations to A.

Row(Column) Equivalent

EXAMPLE 23. The matrix

A =

 0 0 1 2
2 3 0 −2
3 3 6 9





4.1. ECHELON FORM OF A MATRIX 25

and

D = A−2r2+r3→r3 =

 0 0 1 2
2 3 0 −2
−1 −3 6 −5


are row equivalent.

Every nonzero m × n matrix A is row (column) equivalent to a matrix in row (column) echelon
form.

Row(Column) Equivalent

EXAMPLE 24. Let

A =

 0 0 1 2

2 3 0 −2
3 3 6 9

 .

Here 2 is called the pivot. (A pivot column is the �rst column with nonzero entry. A pivot is the �rst
nonzero entry in the pivot column)

Then

B = Ar1↔r2 =

 2 3 0 −2
0 0 1 2
3 3 6 9



C = B 1
2
r1→r1

=

 1 3/2 0 −1
0 0 1 2
3 3 6 9



D = C−3r1+r3→r3 =

 1 3/2 0 −1
0 0 1 2

0 -3/2 6 11



E = Dr2↔r3 =

 1 3/2 0 −1
0 −3/2 6 11
0 0 1 2


Then

F = E−2
3
r2→r2

=

 1 3/2 0 −1
0 1 −4 −22/3
0 0 1 2


Observe that F is now in row echelon form. We can continue to until we get a matrix in reduced row
echelon form.
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THEOREM 7. Every nonzero m × n matrix A is row (column) equivalent to a unique matrix in
reduced row (column) echelon form.

Theorem

Remark:

The row echelon form of a matrix is not unique. (ASSIGNMENT: Provide an example of this)
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NAME:

Find a row echelon form of the following matrix. Record the row operations you perform using the notations
for elementary row operations.

A =

 −1 2 −5
2 −1 6
2 2 7





Chapter 5

Solving Linear Systems

5.1 Solving Linear Systems

In this chapter, we will use the echelon form of a matrix to determine the solution of a linear system.

THEOREM 8. Let Ax = b and Cx = d be two linear systems, each of m equations in n unknowns.
If the augmented matrix [A|b] and [C|d] are row equivalent, then the linear systems are equivalent,
i.e, they have exactly the same solutions.

Equivalent Linear Systems

If A and C are row equivalent m×n matrices, then the homogeneous systems Ax = 0 and Cx = 0
are equivalent.

Corollary

We have two methods for solving linear systems:

1. Gaussian elimination

2. Gauss-Jordan reduction

STEPS FOR GAUSSIAN ELIMINATION:

1. Transform the augmented matrix [A|b] to the matrix [C|d] in row echelon form using elementary row
operations.

28
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2. Write the solution of the linear system corresponding to the augmented matrix [C|d] using back
substitution.

We follow the same steps for Gauss-Jordan reduction replacing row echelon form by reduced row echelon
form.

EXAMPLE 25. Find the solution of the linear system

x+ 2y + 3z = 9

2x− y + z = 8

3x− z = 3

Solution. The linear system

x+ 2y + 3z = 9

2x− y + z = 8

3x− z = 3

has the augmented matrix

[A|b] =

 1 2 3 | 9
2 −1 1 | 8
3 0 −1 | 3


Transforming this matrix to row echelon form, we have

[C|d] =

 1 2 3 | 9
0 1 1 | 2
0 0 1 | 3


Using back substitution, we get

z = 3

y = 2− z = 2− 3 = −1
x = 9− 2y − 3z = 9 + 2− 9 = 2

Hence, the solution of the linear system is x = 2, y = −1, z = 3.

EXAMPLE 26. Let

[C|d] =


1 2 3 4 5 | 6
0 1 2 3 −1 | 7
0 0 1 2 3 | 7
0 0 0 1 2 | 9


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Then

x4 = 9− 2x5

x3 = 7− 2x4 − 3x5 = −11 + x5

x2 = 2− 2x3 = 2 + 5x5

x1 = 6− 2x2 − 3x3 − 4x4 − 5x5 = −1− 10x5

x5 = any real number.

The system is consistent, and all solutions are of the form

x1 = −1− 10r

x2 = 2 + 5r

x3 = −11 + r

x4 = 9− 2r

x5 = r, any real number.

The given linear system has in�nitely many solutions.

EXAMPLE 27. If

[C|d] =

 1 2 3 | 9
0 1 1 | 2
0 0 0 | 3


then the linear system Cx = d has no solution since the last equation 0x1 + 0x2 + 0x3 = 3 is not true.

EXAMPLE 28. If

[C|d] =


1 0 0 0 | 9
0 1 0 0 | 2
0 0 1 0 | 3
0 0 0 1 | 2


then the solution of the linear system is x1 = 9, x2 = 2, x3 = 3, x4 = 2.

This procedure is the Gauss-Jordan reduction.

EXAMPLE 29. Consider the linear system

x+ 2y + 3z = 9

2x− y + 2z = 14

3x+ y − z = −2.

Its augmented matrix is

[A|b] =

 1 2 3 | 6
2 −3 2 | 14
3 1 −1 | −2


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Converting this to its row echelon form, we get 1 2 3 | 6
0 1 2 | 14
0 0 1 | 3


Thus, z = 3, y = −2, x = 1 by back substitution. This procedure is by Gaussian elimination.

To solve the linear system by Gauss-Jordan reduction, we transfrom the matrix 1 2 3 | 6
0 1 2 | 14
0 0 1 | 3


to its reduced row echelon form  1 0 0 | 1

0 1 0 | −2
0 0 1 | 3


We can see that this has the solution z = 3, y = −2, x = 1 is the same by using Gaussian elimination
procedure.
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NAME:

Consider the linear system

x+ y + 2z = −1
x− 2y + 2z = −5
3x+ y + z = 3.

1. Find all solutions, if any exists, by using the Gaussian elimination method.

2. Find all solutions, if any exists, by using the Gauss-Jordan reduction method.



Chapter 6

Inverse of a Matrix

6.1 Inverse of a Matrix

In this lesson, we will �nd for the inverse of a matrix by using elementary row operations. Consider �rst
the following de�nition:

An n × n elementary matrix of type I, type II, or type III is a matrix obtained from the
identity matrix In by performing a single elementary row or elementary column operation of type
I, type II, or type III, respectively.

De�nition

EXAMPLE 30.

E1 =

 0 0 1
0 1 0
1 0 0


E1 is of type I (we interchanged the �rst and third rows of I3)

EXAMPLE 31.

E2 =

 1 0 0
0 −3 0
0 0 1


E2 is of type II (we multiplied the second row of I3 by −3)

EXAMPLE 32.

E3 =

 1 4 0
0 1 0
0 0 1


33
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E3 is of type III (we added four times the second row of I3 to the �rst row of I3)

EXAMPLE 33.

E4 =

 1 0 2
0 1 0
0 0 1


E4 is of type III (we added two times the �rst column of I3 to the third column of I3)

An elementary row operation on a matrix A can be achieved by premultiplying A (multiplying A on the
left) by corresponding elementary matrix E.

Also, an elementary column operation on A can be obtained by postmultiplying A (multiplying A on the
right) by corresponding elementary matrix.

Formally, we have the following theorem:

THEOREM 9. Let A be an m×n matrix, and let an elementary row(column) operation of type I,
type II, or type III be performed on A to yield matrix B. Let E be the elementary matrix obtained
from Im (In) by performing the same elementary row(column) operation as was performed on A.
Then B = EA (B = AE).

Performing Elementary Row(Column) Operation

EXAMPLE 34. Let

A =

 1 3 2 1
−1 2 3 4
3 0 1 2


and let B = A−2r3+r1→r1 . Then

B =

 −5 3 0 −3
−1 2 3 4
3 0 1 2

 .

Let E = (I3)−2r3+r1→r1 . Then

E =

 1 0 −2
0 1 0
0 0 1

 .

We can check that B = EA.

Some important results:
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THEOREM 10. If A and B are m × n matrices, then A is row(column) equivalent to B if and
only if there exist elementary matrices E1, E2, . . . , Ek such that B = EkEk−1 · · ·E2E1A (B =
AE1E2 · · ·Ek−1Ek).

Row(Column) Equivalent

THEOREM 11. An elementary matrix E is nonsingular, and its inverse is an elementary matrix
of the same type.

An Elementary Matrix and its Inverse is Nonsingular

THEOREM 12. Let A be an n×n matrix and let the homogeneous system Ax = 0 have only the
trivial solution x = 0. Then A is row equivalent to In, i.e, the reduced row echelon form of A is
In.

Reduced Row Echelon Form of a Coe�cient Matrix

THEOREM 13. The following statements are equivalent for an n× n matrix A:

1. A is nonsingular

2. Ax = 0 has only the trivial solution

3. A is row(column) equivalent to In

4. The linear system Ax = b has unique solution for every n× 1 matrix b

5. A is a product of elementary matrices

Characterization

Algorithm for �nding A−1:

1. Perform elementary row operations on A until we get In

2. The product of the elementary matrices EkEk−1 · · ·E2E1 gives A
−1

For convenience, we write down the partitioned matrix [A|In] then transform to its reduced row echelon
form to obtain [In|A−1].

EXAMPLE 35. Let

A =

 1 1 1
0 2 3
5 5 1

 .
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If A is nonsingular, we form

[A|I3] =

 1 1 1 | 1 0 0
0 2 3 | 0 1 0
5 5 1 | 0 0 1


Transforming [A|I3] to [I3|A−1], we have

A I3
1 1 1 | 1 0 0 Apply − 5r1 + r3 → r3
0 2 3 | 0 1 0
5 5 1 | 0 0 1

1 1 1 | 1 0 0 Apply 1
2r2 → r2

0 2 3 | 0 1 0
0 0 −4 | −5 0 1

1 1 1 | 1 0 0 Apply − 1
4r3 → r3

0 1 3
2 | 0 1

2 0
0 0 −4 | −5 0 1

1 1 1 | 1 0 0 Apply −32 r3 + r2 → r2 and − 1r3 + r1 → r1
0 1 3

2 | 0 1
2 0

0 0 1 | 5
4 0 −1

4

1 1 0 | −1
4 0 1

4 Apply − 1r2 + r1 → r1
0 1 0 | −15

8
1
2

3
8

0 0 1 | 5
4 0 −1

4

1 0 0 | 13
8 −1

2 −1
8

0 1 0 | −15
8

1
2

3
8

0 0 1 | 5
4 0 −1

4

It follows that

A−1 =

 13
8 −1

2 −1
8

−15
8

1
2

3
8

5
4 0 −1

4

 .

QUESTION: How do we know that a matrix A is singular?

The next theorem answers this question.

THEOREM 14. An n × n matrix A is singular if and only if A is row equivalent to matrix B,
having at least one row that consists entirely of zeros.

Singular Matrix

EXAMPLE 36. Let

A =

 1 2 −3
1 −2 1
5 −2 −3

 .
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To �nd A−1, we proceed as follows:

A I3
1 2 −3 | 1 0 0 Apply − 1r1 + r2 → r2
1 −2 1 | 0 1 0
5 −2 −3 | 0 0 1

1 2 −3 | 1 0 0 Apply − 5r1 + r3 → r3
0 −4 4 | −1 1 0
5 −2 −3 | 0 0 1

1 2 −3 | 1 0 0 Apply − 3r2 + r3 → r3
0 −4 4 | −1 1 0
0 −12 12 | −5 0 1

1 2 −3 | 1 0 0
0 −4 4 | −1 1 0
0 0 0 | −2 −3 1

It follows that A is row equivalent to

B =

 1 2 −3
0 −4 4
0 0 0

 .

Since B has row of zeros, we conclude that A is a singular matrix.
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NAME:

1. Find the inverse of

A =

 1 2 3
2 −4 4
3 0 1


if it exists.



Chapter 7

Determinants

Consider �rst the following de�nition:

Let S = {1, 2, . . . , n} be the set of integers from 1 to n arranged in ascending order. A permutation
of S is a rearrangement j1j2 . . . jn of elements of S. We can view a permutation of S as a one-to-one
mapping of S onto itself.

De�nition

EXAMPLE 37. Let S = {1, 2, 3, 4}. Then 4231 is a permutation of S. This corresponds to the function
f : S → S de�ned by f(1) = 4, f(2) = 2, f(3) = 3, f(4) = 1.

A permutation j1j2 . . . jn is said to have an inversion if a larger integer jr precedes a smaller one
js. A permutation is called even if the total number of inversions in it is even or odd if the total
number of inversions in it is odd.

De�nition

Remark: If n ≥ 2, there are n!/2 even and n! odd permutations in Sn

EXAMPLE 38.

1. S1 has only 1! = 1 permutation, which is even because there is no inversion.

2. S2 has 2! permutations:

12, which is even (no inversion)

21, which is odd (one inversion)

3. In the permutation 4321 of S4, the total number of inversions is 5, hence it is odd.

39
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Let A = [aij ] be n× n matrix. The determinant function, denoted by det, is de�ned by

det(A) =
∑

(±)a1j1a2j2 · · · anjn ,

where the summation is over all permutations j1j2 · · · jn is even or odd.

The sign is + if the permutation is even and − if the permutations is odd.

De�nition

Other notation: det(A) = |A|

Let A =

[
a11 a12
a21 a22

]
.

To obtain det(A), write the terms a1_a2_ and replace the dashes with all possible elements of S2.

The subscripts become 12 and 21.

Since 12 is even and 21 is an odd permutation,

det(A) = a11a22 − a12a21.

Practice:

Let

A =

 1 2 3
2 1 4
3 0 1


Evaluate det(A).
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NAME:

Given a 3× 3 matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

determine det(A) by using the de�nition.
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The previous method for computing det(A) is not applicable for n ≥ 4.

PROPERTIES OF DETERMINANTS:

1. If A is a matrix, then det(A) = det(AT ).

2. If matrix B results from matrix A by interchanging two di�erent rows (columns) of A, then det(B) =
−det(A).

3. If a row (column) of A consists of entirely zeros, then det(A) = 0.

4. If B is obtained from A by multiplying a row (column) of A by a real number k, then det(B) =
kdet(A).

5. If B = [bij ] is obtained from A = [aij ] by adding to each element of the rth row (column) of A, k
times the corresponding element of the sth row (column), r 6= s, of A, then det(B) = det(A).

EXAMPLE 39. ∣∣∣∣∣∣
1 2 3
2 −1 3
1 0 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
5 0 9
2 −1 3
1 0 1

∣∣∣∣∣∣
How?

6. If a matrix A = [aij ] is upper (lower) triangular, then det(A) = a11a22 · · · ann; that is, the determinant
of a triangular matrix is the product of the elements on the main diagonal.

7. If A is an n× n matrix, then A is nonsingular if and only if det(A) 6= 0.

8. If A and B are n× n matrices, then det(AB) = det(A)det(B).

9. If A is nonsingular, then det(A−1) = 1
det(A) .

We will now develop a method for evaluating the determinant of an n×n matrix that reduces the problem
to the evaluation of matrices of order n− 1.

Let A = [aij ] be an n × n matrix. Let Mij be the (n − 1) × (n − 1) submatrix of A obtained by
deleting the ith row and jth column of A. The determinant det(Mij) is called the minor of aij .
Let A = [aij ] be an n× n matrix. The cofactor Aij of aij is de�ned as Aij = (−1)i+jdet(Mij).

De�nition
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Practice:

Let

A =

 1 2 3
2 −1 3
1 0 1

 .

Evaluate det(M12), det(M23), and det(M31), A12, A23, and A31

Remark:

To evaluate the determinant of a matrix, it is best to expand along either row or column with largest
number of zeroes. (Why?)

7.1 Cramer's Rule

Let

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...

an1x1 + an2x2 + · · ·+ annxn = bn

be a linear system of n equations in n unknowns and let A = [aij ] be the coe�cient matrix so that we can

write the given system as A~x = ~b, where

~b =


b1
b2
...
bn

 .

If det(A) 6= 0, then the system has the unique solution

x1 = det
det(A1)

det(A)
, x2 = det

det(A2)

det(A)
, · · · , xn = det

det(An)

det(A)
,

where Ai is the matrix obtained from A by replacing the ith column of A by ~b.

EXAMPLE 40. Consider the following linear system:

−2x1 + 3x2 − 3x3 = 1

x1 + 2x2 − x3 = 4

−2x1 − x2 + x3 = −3

Solution.

A =

 −2 3 −1
1 2 −1
−2 −1 1

 = −2
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Then

x1 =

 1 3 −1
4 2 −1
−3 −1 1


|A|

=
−4
−2

= 2,

x2 =

 −2 1 −1
1 4 −1
−2 −3 1


|A|

=
−6
−2

= 3,

and

x3 =

 −2 3 1
1 2 4
−2 −1 −3


|A|

=
−8
−2

= 4.
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NAME:

1. Compute the determinant of

A =

 1 2 3
2 −4 4
0 0 1


by using the de�nition and cofactor method.

2. If possible, solve the following linear systems by Cramer's rule:

2x1 + 4x2 + 6x3 = 2

x1 + 2x3 = 0

2x1 + 3x2 − x3 = −5



46 CHAPTER 7. DETERMINANTS

NAME:

Write TRUE if the following statements are correct and FALSE if it is not correct.

1. det(A+B) = det(A) + det(B) ANSWER:

2. det(A−1B) =
det(B)

det(A)
ANSWER:

3. If det(A) = 0, then A has atleast two equal rows. ANSWER:

4. If A has a column of all zeros, then det(A) = 0. ANSWER:

5. A is singular if and only if det(A) = 0. ANSWER:

6. If B is the reduced row echelon form of A, then det(B) = det(A). ANSWER:

7. The determinant of an elementary matrix is always equal to 1. ANSWER:

8. If all the diagonal elements of an n×n matrix A are zero, then det(A) = 0. ANSWER:

9. det(ABTA−1) = det(B). ANSWER:

10. 1
c (det(cA) = det(A). ANSWER:



Chapter 8

Vectors in Plane and 3-Space

8.1 Vectors in Plane and in 3-Space

In many applications we deal with measurable quantities such as pressure, mass, and speed. This can be
described using their magnitude. They are called scalars.

Other measurable quantities such as velocity, force, and acceleration require both magnitude and direction.
They are called vectors.

This chapter introduces vectors in a plane and 3-space.

We note that vectors may be encountered in Physics and in Calculus.

NOTATIONS:

~v means vector ~v

Small letters of English alphabet for scalars

ACTIVITY:

In a short bondpaper, perform the following:

1. Draw a pair of perpendicular lines intersecting at a point O. Name this as the origin. Name the
horizontal line as x-axis and the vertical line as the y-axis. Together it is called a coordinate axes
and forms a rectangular coordinate system/Cartesian coordinate system.

2. Choose a point on the x-axis to the right of O and a point on the y-axis above O.

3. Associate an ordered pair (x, y) to the assigned points. We call x and y as coordinates of (x, y). This
point P in the Cartesian coordinate system can be denoted as P (x, y).

The set of all points in the plane is denoted by R2. This is also called the 2-space.

47
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4. Associate a 2× 1 matrix corresponding to P (x, y). Write this as

~x =

[
x
y

]

5. Draw a directed line segment from O to P (x, y). Here, O is called its tail and P its head. (To
distinguish the tail from head, draw an arrowhead on the head)

Notice that this directed line segment has a direction. The magnitude of a directed line segment
is its length.

Can you compute the magnitude of your directed line segment?

6. De�ne based on your experience from 1 to 5 a vector in the plane.

A vector in the plane is a 2× 1 matrix ~x =

[
x
y

]
, where x and y are real numbers, called the

components of ~x. We call a vector in a plane as a vector or a 2-vector.

De�nition

QUESTIONS:

1. With a given vector ~x =

[
x
y

]
, can we associate a directed line segment?

ANSWER:

2. Given a directed line segment, can we associate a vector?

ANSWER:

3. Can we use the terms directed line segment and vector interchangeably?

ANSWER:

In physical conditions, it is necessary to deal with a directed line segment PQ from point P (x, y) not
necessarily the origin to the point Q(x′, y′). This is also called a vector in a plane with tail P and head Q.

What do you think is the component of this vector?

ANSWER:

Two vectors in the plane are equal if their respective components are equal.

De�nition
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Are the following vectors are equal? What is the component of the three vectors?

EXAMPLE 41. The head of the vector

~P4Q4 =

[
2
3

]
= ~P2Q2

with tail P4(−5, 2) can be determined as follows:

x′4 − (−5) = 2

and y′4 − 2 = 3

Thus, x′4 = −3 and y′4 = 5.

QUESTION:
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What is the tail of the vector P5(x5, y5) of the vector

~P5Q5 =

[
2
3

]
with head Q5(8, 6)?

Note that a vector in a plane can represented as a matrix. Hence, de�nition for operations like addition
and scalar multiplication applies.

Let ~u =

[
u1
u2

]
and ~v =

[
v1
v2

]
be two vectors in the plane. The sum of the vectors ~u and ~v is the

vector ~u+ v =

[
u1 + v1
u2 + v2

]
If ~u =

[
u1
u2

]
is a vector and c is a scalar (real number), then the scalar multiple ~cu of ~u by c is

the vector ~cv =

[
cu1
cu2

]
.

De�nition

Geometrically, vector addition and scalar multiplication can be represented as follows:

Here, c > 0 and d < 0.

EXAMPLE 42. If c = 2, d = −3, and ~u =

[
2
−3

]

The vector ~0 =

[
0
0

]
is called the zero vector.

RESULTS:
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1. If ~u is any vector, then ~u+~0 = ~u.

2. For any vector ~u, ~u+ (−1)~u = ~0.

We write (−1)~u as −~u. This is called the negative of ~u.

NOTATION: ~u+ (−1)~u = ~u− v.

Di�erence between two vectors can be represented geometrically as follows:
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NAME:

Sketch a directed line segment in R2 representing the following:

1. ~u =

[
2
3

]

2. ~v =

[
−3
4

]
3. ~u+ v (Use vectors in 1 and 2)

4. ~u− v (Use vectors in 1 and 2)

5. Determine the head of the vector

[
2
6

]
whose tail is (−3, 2). Sketch this vector.
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Equivalently, we can associate a point P (x, y, z) in R3 a vector.

A vector in space, or 3-vector, or simply a vector, is a 3× 1 matrix ~x =

 x
y
z

, where x, y, z

are real numbers called the components of ~x.
Two vectors in space are said to be equal if their respective components are equal.

De�nition

Geometrically, a vector in R3 can be represented as

Similar with vectors in a plane, the following represent di�erent directed line segments representing the
same vector.

Vector addition and scalar multiplication in R3 are de�ned in similar way.
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Let ~u =

 u1
u2
u3

 and ~v =

 v1
v2
v3

 be two vectors in R3. The sum of the vectors ~u and ~v is the

vector ~u+ v =

 u1 + v1
u2 + v2
u3 + v3


If ~u =

 u1
u2
u3

 is a vector and c is a scalar (real number), then the scalar multiple ~cu of ~u by c is

the vector ~cv =

 cu1
cu2
cu3

 .

De�nition

What do you think is the zero vector and di�erence of two vectors mean in R3?

Geometrically,
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NAME:

Sketch a directed line segment in R3 representing the following:

1. ~u =

 2
3
4



2. ~v =

 1
4
2


3. ~u+ v (Use vectors in 1 and 2)

4. Determine the head of the vector

 2
6
4

 whose tail is (3, 2, 1). Sketch this vector.
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Vector Spaces

9.1 Vector Spaces

PROPERTIES OF VECTORS in R2 or R3:

THEOREM 15. If ~u,~v and ~w are vectors in R2 or R3, and c, d are real scalars, then

1. ~u+ ~v = ~u+ v

2. ~u+ (~v + ~w) = (~u+ ~v) + ~w

3. ~u+~0 = ~0 + ~u = ~u

4. ~u+ (−~u) = ~0

5. c(~u+ ~v) = c~u+ c~v

6. (c+ u)~v = c~u+ d~u

7. c(d~u) = (cd)~u

8. 1~u = ~u

Properties of Vectors

We will now de�ne a real vector space.

56
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A real vector space is a set V of elements with two operations ⊕ and � satisfying the following:

a If ~u and ~v are members of V , then ~u⊕ ~v ∈ V .

1 ~u⊕ ~v = ~v ⊕ ~u for each ~u,~v ∈ V

2 ~u⊕ (~v ⊕ ~w) = (~u⊕ ~v)⊕ ~w for all ~u,~v, ~w ∈ V .

3 There is an element ~0 ∈ V s.t. ~u⊕~0 = ~u for all ~u ∈ V .

4 For each ~u ∈ V , there is an element −~u ∈ V s.t. u⊕−~u = −~u⊕ ~u = ~0.

b If ~u ∈ V and c ∈ R, then c� ~u ∈ V .

5 c� (~u⊕ ~v) = c� ~u⊕ c� ~v for each ~u,~v ∈ V and c ∈ R.
6 (c+ d)� ~u = c� ~u⊕ d� ~u for any ~u ∈ V and any real numbers c and d.

7 c� (d� ~u) = (cd)� ~u for any ~u ∈ V and any real numbers c and d.

8 1� ~u = ~u for any ~u ∈ V .

De�nition

The elements of V are called vectors: the elements of the set of real numbers R are called scalars.

The operation ⊕ is called vector addition : the operation � is called scalar multiplication.

The vector ~0 in property a3 is called a zero vector,

The vector −~u in property a4 is called a negative of ~u.

A set V and two operations ⊕ and � satisfying all the properties of the de�nition is called a vector space.

NOTATION: 〈V,⊕,�〉 is a vector space together with operations ⊕ and �

REMARK: The ~0 and −~u are unique.

Proof: Let 01 and 02 be zero vectors. Then

~01 ⊕~02 = ~01

and
~01 ⊕~02 = ~02.

Thus,
~01 = ~01 ⊕~02 = ~02.

This shows that ~0 is unique.

CLAIM: −~u is unique.

Proof: Let u1 and u2 be negatives of ~u. Then

~u⊕ ~u1 = ~0
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and
~u⊕ ~u2 = ~0.

Thus,
~u1 ⊕ (~u⊕ ~u1) = ~u1 ⊕ (~u⊕ ~u2).

It follows that
( ~u1 ⊕ ~u)⊕ ~u1 = ( ~u1 ⊕ ~u)⊕ ~u2.

Hence,
~0⊕ ~u1 = ~0⊕ ~u2.

Therefore,
~u1 = ~u2.

Consequently, −~u is unique. �

EXAMPLE 43. Consider Rn. This is the set of all n× 1 matrices


a1
a2
...
an


with real entries.

Let ⊕ be matrix addition and � be multiplication of a matrix by a real number (scalar multiplication).

It can be veri�ed that 〈Rn,⊕,�〉 is a vector space.

EXAMPLE 44.

The set V of all m × n matrices with ⊕ as matrix addition and � as multiplication of a matrix by real
number is a vector space.

We denote this vector space as Mmn.

EXAMPLE 45.

The set V of all real numbers with ⊕ as the usual addition of real numbers and � as the usual multiplication
of real numbers is a vector space.

In this case, the members of the set of real numbers is both vectors and scalars.

EXAMPLE 46. Let Rn be the set of all 1× n matrices [a1a2 . . . an], where ⊕ is de�ned as

[a1a2 . . . an]⊕ [b1b2 . . . bn] = [a1 + b1a2 + b2 . . . an + bn]

and � is de�ned as
c� [a1a2 . . . an] = [ca1ca2 . . . can].



9.1. VECTOR SPACES 59

Then 〈Rn,⊕,�〉 is a vector space.

If A = [aij ] is an n×n matrix, then the trace of A, denoted by Tr(A), is de�ned as the sum of all elements
on the main diagonal of A.

Tr(A) =
n∑

i=1

aii

PROPERTIES OF THE TRACE OF A MATRIX:

1. Tr(cA) = cTr(A), where c is a real numebr

2. Tr(A+B) = Tr(A) + Tr(B)

3. Tr(AB) = Tr(BA)

4. Tr(AT ) = Tr(A)

5. Tr(ATA) ≥ 0

EXAMPLE 47. Let V be the set of all 2× 2 matrices with trace equal to zero, that is,[
a b
c d

]
∈ V

if Tr(A) = a+ d = 0.

The operation ⊕ and � are standard matrix addition and standard scalar multiplication, respectively.

It can be shown that 〈V,⊕,�〉 is a vector space.

EXAMPLE 48. Recall: A polynomial in t is a function of the form p(t) = ant
n+an−1t

n−1+ · · ·+a1t+a0,
where a′is are real numbers for all i = 1, 2, . . . , n and n is a nonnegative integer. If an 6= 0, then p(t) is said
to have degree n. The zero polynomial has no degree.

Let Pn be the set of all polynomials of degree less than or equal to n together with the zero polynomial.

Let p(t), q(t) ∈ Pn. Then
p(t) = ant

n + an−1t
n−1 + · · ·+ a1t+ a0

and
q(t) = bnt

n + bn−1t
n−1 + · · ·+ b1t+ b0.

De�ne p(t)⊕ q(t) as

p(t)⊕ q(t) = (an + bn)t
n + (an−1 + bn−1)t

n−1 + · · ·+ (a1 + b1)t+ (a0 + b0).

If c is a scalar, de�ne c� p(t) as

c� p(t) = (can)t
n + (can−1)t

n−1 + · · ·+ (ca1)t+ (ca0).
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It can be shown that Pn is a vector space.

EXAMPLE 49. Let V be the set of all real-valued functions de�ned on R. If f, g ∈ V , de�ne

(f ⊕ g)(t) = f(t) + g(t).

If f ∈ V and c ∈ R, de�ne (c� f)(t) = cf(t). Then V is a vector space.

EXAMPLE 50. Let V be the set of all real multiples of exponential functions of the form ekx, where k is
any real number. De�ne ⊕ as

c1e
kx ⊕ c2e

mx = c1c2e
(k+m)x

and scalar multiplication ⊕
r ⊕ c1e

kx = rc1e
kx.

〈V,⊕,�〉 is not a vector space.

To see this, note that e0x = 1 and for any vector c1e
kx ∈ V ,

c1e
kx ⊕ 1 = 1⊕ c1e

kx = c1e
kx.

This means that 1 is the zero vector in V .

Note also that 0ekx = 0 ∈ V but there is no vector ~v = c1e
kx in V such that ~v ⊕ 0 = 1.

EXAMPLE 51. Let V be the set of all real numbers with operations ~u⊕ ~v = ~u− ~v (this means that the
operation ⊕ is the usual subtraction) and c�~u (this means that the operation � is the usual multiplication).

Investigate if 〈V,⊕,�〉 is a vector space or not.

EXAMPLE 52. Let V be the set of all ordered triples of real numbers (x, y, z) with operations

(a, b, c)⊕ (x, y, z) = (x, b+ y, c+ z)

and
c� (x, y, z) = (cx, cy, cz).

Investigate if 〈V,⊕,�〉 is a vector space or not.

EXAMPLE 53. Let V be the set of all integers. De�ne ⊕ as the ordinary addition and ⊕ as the ordinary
multiplication.

Investigate if 〈V,⊕,�〉 is a vector space or not.
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THEOREM 16. If V is a vector space, ~u ∈ V and c is any real number , then

1. ~0� ~u = ~0

2. c�~0 = ~0

3. If c� ~u = ~0, then either c = 0 or ~u = 0.

4. (−1)� ~u = −~u

PROPERTIES COMMON TO ALL VECTOR SPACES

Proof:

1. ~0� ~u = (~0⊕ ~0)� ~u = ~0� ~u⊕ ~0� ~u. This means that ~0� ~u is a zero in V . Since a zero in a vector
space is unique, ~0� ~u = ~0.

2. c�~0 = c� (~0⊕~0) = c�~0⊕ c�~0. Thus, c�~0 = ~0.

3. Let c � ~u = ~0. If c = 0, then we are done. Suppose that c 6= 0. Then 1
c � (c � ~u) = 1

c � ~0 = ~0.

Also, 1
c�(c�~u) = [1c (c)]�~u = 1�~u = ~u.

Consequently, ~u = ~0.

4. Note that (−1)� ~u⊕ ~u = (−1)� ~u⊕ 1� ~u = (−1 + 1)� ~u = ~0� ~u = ~0. Since the inverse of a vector
is unique, (−1)� ~u = −~u.
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Subspaces

10.1 Subspaces

Let V be a vector space and W a nonempty subset of V . If W is a vector space with respect to the
operations in V , then W is calleda subspace of V .

To check if a subset of a vector space is a vector space, we use the following result.

NOTATION: We denote W ≤ V if W is a subspace of V .

Let 〈V,⊕,�〉 be a vector space and ∅ 6= W ⊆ V . Then W ≤ V if and only if the following
conditions hold:

1. If ~u and ~v in W , then ~u⊕ ~v ∈W .

2. If c is any real number and ~u ∈W , then c� ~u ∈W .

Subspace Criterion

Proof: Let W ≤ V . Then W is a vector space so that (a) and (b) of the de�nition of a vector space hold.
This means that 1 and 2 of this theorem holds.

For the converse, suppose that 1 and 2 of this theorem holds.

To show: W ≤ V

Let ~u ∈ W . Then from 2, (−1) � ~u ∈ W . Then by 1, ~u ⊕ (−1) � ~u ∈ W . Since ~u ⊕ (−1) � ~u = ~0 ∈ W .
Thus, ~u ⊕ ~0 = ~u ∈ W . Also, properties (1), (2), (5), (6), (7) and (8) hold in W because they hold in V .
Hence, W ≤ V .

�
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EXAMPLE 54. Every vector space V has at least two subspaces: The subspace {0} and V itself.

Reason: In any vector space V , ~0⊕~0 = ~0 and c�~0 = ~0.

The subspace {0} is called the zero subspace of V

EXAMPLE 55. Let P2 be the set consisting of all polynomials of degree less tahn or equal to 2 together
with the zero polynomial. Then P2 is a subset of the vector space P of all polynomials.

It can be shown that P2 is a subspace of P .

In general, the set Pn of all polynomials of degree less than or equal to n and the zero polynomial is a
subspace of P .

Also, Pn is a subspace of Pn+1.

EXAMPLE 56. Let V be the set of all polynomials of degree exactly equal to 2. Then V is a subset of
the vector space P of all polynomials but V is not a subspace of P .

Example: The sum of polynomials 3x2 − 2x+ 1 and −3x2 + 5x+ 1 is a polynomial of degree 1. It means
that the sum of these two polynomials does not belong to V .

EXAMPLE 57. Determine if the following subsets of R2 with the usual vector addition and scalar multi-
plication are subspaces of R2.

i. W1 =

{[
x
y

]
: x ≥ 0

}

ii. W2 =

{[
x
y

]
: x ≥ 0, y ≥ 0

}

iii. W3 =

{[
x
y

]
: x = 0

}

Solution. i. W1 is the right half of the xy-plane.

Take

[
1
2

]
in W1. Then −2�

[
1
2

]
=

[
−2
−4

]
is not in W1.

Thus, W1 is not a subspace of R2.
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ii. W2 is the �rst quadrant of the xy-plane. Taking the same vector as in i shows that W2 is not a subspace
of R2.

iii. W3 is the y-axis in the xy-plane. It can be shown that W3 is a subspace of R2.

EXAMPLE 58. Let W be the set of all vectors in R3 of the form

 a
b

a+ b

 where a and b are real

numbers. It can be shown that W is a subspace of R3.

NOTATION:

From now on, we will denote ~u⊕ ~v simply as u+ v and c� ~u simply as cu if we are in a vector space.

ASSIGNMENT: Show that a nonempty subset W of a vector space V is a subspace of V if and only if
cu+ dv ∈W for every vectors u, v ∈W and any scalars c and d.

10.2 Linear Combination

Let v1, v2, . . . , vk be vectors in a vector space V . A vector v ∈ V is called a linear combination
of the vectors v1, v2, . . . , vk if

v = a1v1 + a2v2 + · · ·+ akvk =
k∑

i=1

aivi

for some real numbers a1, a2, . . . , ak.
Remark: The set S in this de�nition can be replaced by an in�nite set S of vectors in a vector
space using corresponding notation for in�nite sums.

De�nition

EXAMPLE 59. In example 58, we have shown that set of all vectors W in R3 of the form

 a
b

a+ b

 where

a and b are real numbers is a subspace of R3. Let v1 =

 1
0
1

 and v2 =

 0
1
1

. Then every vector in W

is a linear combination of v1 and v2 because av1 + bv2 =

 a
b

a+ b

.
EXAMPLE 60. By example 55, P2 is a vector space of all polynomials of degree 2 or less and the zero
polynomial. So each vector in P2 has the form ax2 + bx+ c. This means that every vector in P2 is a linear
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combination of vectors x2, x, and 1.

EXAMPLE 61. Let v1 =

 1
2
1

 , v2 =

 1
0
2

 , and v3 =

 1
1
0

.

The vector v =

 2
1
5

 is a linear combination of v1, v2, v3 if there are real numbers a1, a2, a3 such that

a1v1 + a2v2 + a3v3 = v.

Then

a1

 1
2
1

+ a2

 1
0
2

+ a3

 1
1
0

 =

 2
1
5

 .

Thus,

a1 + a2 + a3 = 2

2a1 + a3 = 1

a1 + 2a2 = 5.

Solving this linear system gives
a1 = 1, a2 = 2, a3 = −1.

This means that v = v1 + 2v2 − v3 and so v is a linear combination of v1, v2 and v3.
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NAME:

1. The set W consisting of all points in R2 of the form (x, x) is a straight line. Investigate if W is a
subspace of R2.

2. Let W be the set of all points in R3 that lie in the xy-plane. Investigate if W is a subspace of R3.
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NAME:

Which of the given subsets of R3 are subspaces? (Explain)

1. The set of all vectors of the form

 a
b
1

.

2. The set of all vectors of the form

 a
b

a+ 2b

.

3. The set of all vectors of the form

 a
0
0



4. The set of all vectors of the form

 a
b
c

, where a+ 2b− c = 0.
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NAME:

Which of the following vectors in R3 are linear combinations of

v1 =

 4
2
−3

 , v2 =

 2
1
−2

 , v3 =

 −2−1
0

?

1.

 1
1
1



2.

 4
2
−6



3.

 2
−1
1



4.

 1
2
3


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Span

11.1 Span

If S = {v1, v2, . . . , vk} is a set of vectors in a vector space V , then the set of all vectors in V that
are linear combinations of the vectors in S is denoted by

span S

or
span {v1, v2, . . . , vk}.

Remark: This de�nition also applies to an in�nite set S of vectors in a vector space.

Span

EXAMPLE 62. Let

S =

{[
1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 0
0 1 0

]
,

[
0 0 0
0 0 1

]
.

}

Then span S is the set in M23 consisting of all vectors of the form

a

[
1 0 0
0 0 0

]
+ b

[
0 1 0
0 0 0

]
+ c

[
0 0 0
0 1 0

]
+ d

[
0 0 0
0 0 1

]
=

[
a b 0
0 c d

]
,

where a, b, c, d are real numbers.

This means that spanS is the subset of M23 consisting of all matrices of the form

[
a b 0
0 c d

]
,
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where a, b, c, d are real numbers.

EXAMPLE 63. Let S = {x2, x, 1} be a subset of P2. Then spanS = P2.

EXAMPLE 64. Let

S =


 2

0
0

 ,

 0
−1
0

 ,

 0
0
0

 ⊆ R3.

Then span S is the set of all vectors in R3 of the form

 a
b
0

 .

THEOREM 17. Let S = {v1, v2, . . . , vk} be a set of vectors in a vector space V . Then span S ≤ V .

span S is a Subspace

Proof: Note that ∅ 6= spanS ⊆ V. Let u,w ∈ span S. Then

u =
k∑

i=1

aivi

and

w =
k∑

i=1

bivi

for some ai, bi ∈ R. Thus,

u+ w =
k∑

i=1

aivi +
k∑

i=1

bivi =
k∑

i=1

(ai + bi)vi.

Also,

cu = c

(
k∑

i=1

aivi

)
=

k∑
i=1

(cai)vi.

Therefore, by subspace criterion, span S ≤ V .

EXAMPLE 65. Let S = {x2, x} ⊆ P2. Then span S is the subspace of all polynomials of the form ax2+bx,
where a, b ∈ R.

EXAMPLE 66. Let

S =

{[
1 0
0 0

]
,

[
0 0
0 1

]
⊆M22.

Then span S is the subspace of all 2× 2 diagonal matrices.
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Let S be a set of vectors in a vector space V . If every vector in V is a linear combination of the
vectors in S, then the set S is said to span V , or V is spanned by the set S; that is, span S = V .
If span S = V , then S is called a spanning set of V .

Spanned by a Set

EXAMPLE 67. Let v1 =

 2
1
1

 and v2 =

 1
−1
3

. Then v1, v2 ∈ R3.

Determine whether the vector v =

 1
5
−7

 belongs to span {v1, v2}.

Solution. Let S = {v1, v2}. We can say that v ∈ span S if we can �nd scalars a and b such that
av1 + bv2 = v. It means that

a

 2
1
1

+ b

 1
−1
3

 =

 1
5
−7

 .

This corresponds to a linear system whose augmented matrix is

 2 1 | 1
1 −1 | 5
1 3 | −7


and whose reduced row echelon form of this system is 1 0 | 2

0 1 | −3
0 0 | 0

 .

This means that the linear system is consistent whose a1 = 2 and a2 = 3. Therefore, v ∈ span S.

EXAMPLE 68. Let v1 = 2t2+t+2, v2 = t2−2t, v3 = 5t2−5t+2, v4 = −t2−3t−2. Then v1, v2, v3, v4 ∈ P2.
Determine whether the vector v = t2 + t+ 2 belongs to span {v1, v2, v3, v4}.

Solution. In order to say that v ∈ span S, we must �nd scalars a, b, c, d such that av1+bv2+cv3+dv4 = v.
This means that

a1(2t
2 + t+ 2) + a2(t

2 − 2t) + a3(5t
2 − 5t+ 2) + a4(−t2 − 3t− 2) = t2 + t+ 2.

Thus,
(2a1 + a2 + 5a3 − a4)t

2 + (a1 − 2a2 − 5a3 − 3a4)t+ (2a1 + 2a3 − 2a4) = t2 + t+ 2.
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Equating coe�cients of respective powers of t, we get the linear system

2a1 + a2 + 5a3 − a4 = 1

a1 − 2a2 − 5a3 − 3a4 = 1

2a1 + 2a3 − 2a4 = 2.

Forming the augmented matrix of this system and transforming it to reduced row echelon form, we obtain

 1 0 1 −1 | 0
0 1 3 1 | 0
0 0 0 0 | 1

 .

This means that the system is inconsistent or has no solution. Hence, v does not belong to span S.

EXAMPLE 69. Let V be the vector space R3. Let

v1 =

 1
2
1

 , v2 =

 1
0
2

 , v3 =

 1
1
0

 .

Show that {v1, v2, v3} span V , i.e, span {v1, v2, v3} = R3.

Solution. Let v =

 a
b
c

 ∈ R3. To show that {v1, v2, v3} span V , we determine if there are scalars a1, a2, a3

such that a1v1 + a2v2 + a3v3 = v. This will yield to a linear system

a1 + a2 + a3 = a

2a1 + a3 = b

a1 + 2a2 = c.

A solution to this system is

a1 =
−2a+ 2b+ c

3
, a2 =

a− b+ c

3
, a3 =

4a− b− 2c

3
.

This means that span S = R3.
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NAME:

Determine whether the given vector p(t) in P2 belongs to span {p1(t), p2(t), p3(t)}, where
p1(t) = t2 + 2t+ 1, p2(t) = t2 + 3, and p3(t) = t− 1.

1. p(t) = t2 + t+ 2

2. p(t) = 2t2 + 2t+ 3



Chapter 12

Linear Independence

12.1 Linear Independence

In our past lessons, we have shown that the set W of all vectors of the form

 a
b

a+ b

 where a and b are

real numbers is a subspace of R3.

We note also that the following sets are spanning sets for W . (Verify)

S1 =


 1

0
1

 ,


 0

1
1

 ,


 3

2
5



S2 =


 1

0
1

 ,


 0

1
1

 ,


 0

0
0

 ,


 2

0
2



S3 =


 1

0
1

 ,


 0

1
1


If we can determine a spanning set for a vector space V that is minimal in the sense that it contains the
fewest number of vectors, then we have an e�cient way to describe every vector in V .

In this example, the most e�cient spanning set is S3 since it only contains 2 members.

Since the vectors in S3 span W (means every vector in W is a linear combination of vectors in S3) and S3

is a subset of S1 and S2, it means that the vector

 3
2
5

 ∈ S1 (which is also in W ) is a linear combination

74
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of the vectors in S3. Also, the vectors

 0
0
0

 ,

 2
0
2

 ∈ S2 must be linear combinations of the vectors in

S3.

To see this, we have

3

 1
0
1

+ 2

 0
1
1

 =

 3
2
5

 ,

0

 1
0
1

+ 0

 0
1
1

 =

 0
0
0

 ,

2

 1
0
1

+ 0

 0
1
1

 =

 2
0
2

 .

Also for set S1,

3

 1
0
1

+ 2

 0
1
1

− 1

 3
2
5

 =

 0
0
0

 .

For S2,

0

 1
0
1

+ 0

 0
1
1

− 1

 0
0
0

 =

 0
0
0

 ,

2

 1
0
1

+ 0

 0
1
1

− 1

 2
0
2

 =

 0
0
0

 .

OBSERVATION:

If span S = V and there is a linear combination of vectors in S with coe�cients not all zero that gives the
zero vector, then some subset of S is also a spanning set for V .

This motivates our further study.
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The vectors v1, v2, . . . , vk in a vector space V are said to be linearly dependent if there exist
constants a1, a2, . . . , ak which are not all zero such that

k∑
i=1

aivi = a1v1 + a2v2 + · · ·+ akvk = 0.∗∗

Otherwise, v1, v2, . . . , vk are called linearly independent. This means that v1, v2, . . . , vk are
linearly independent if

k∑
i=1

aivi = a1v1 + a2v2 + · · ·+ akvk = 0

and
a1 = a2 = · · · = ak = 0.

We say that S = {v1, v2, . . . , vk} is linearly dependent (independent) if the vectors vi are linearly
dependent (independent.

Linearly Dependent/Independent

Remarks:

1. The equation
k∑

i=1

aivi = a1v1 + a2v2 + · · ·+ akvk = 0

in the above de�nition always holds if all scalars a1, a2, . . . , ak equal to zero. The important point in
this de�nition is whether it is possible to satisfy (**) with at least one of the scalars di�erent from
zero.

2. Regardless or the form of the vectors, equation (**) yields a homogeneous linear system of equations.
It is always consistent because ai = 0 for all i is a solution.

EXAMPLE 70. Determine whether the vectors

v1 =

 3
1
1

 , v2 =

 1
2
0

 , v3 =

 −12
−1


are linearly independent.

Solution.

a1

 3
1
1

+ a2

 1
2
0

+ a3

 −12
−1

 =

 0
0
0


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From here we get

3a1 + a2 − a3 = 0

2a1 + 2a2 + 2a3 = 0

a1 − a3 = 0

whose augmented matrix is

 3 1 −1 | 0
2 2 2 | 0
1 0 −1 | 0

 .

Transforming this to its reduced echelon form, we get

 1 0 −1 | 0
0 1 2 | 0
0 0 0 | 0

 .

This means that the linear system has a nontrivial solution

 k
−2k
k

, where k 6= 0. Therefore, the vectors

v1, v2, v3 are linearly independent.

PRACTICE:

Are the following vectors linearly dependent or linearly independent?

1. v1 = [1 0 1 2], v2 = [0 1 1 2], and v3 = [1 1 1 3] in R4

2. v1 =

[
2 1
0 1

]
, v2 =

[
1 2
1 0

]
, v3 =

[
0 −3
−2 1

]
in M22

3. v1 = [1 0 0], v2 = [0 1 0], v3 = [0 0 1] in R3

4. v1 = t2 + t+ 2, v2 = 2t2 + t, v3 = 3t62 + 2t+ 2 in P2

THEOREM 18. Let S = {v1, v2, . . . , vn} be set of n vectors in Rn (Rn). Let A be the matrix whose
columns (rows) are the elements of S. Then S is linearly independent if and only if det(A) 6= 0.

Linearly Independent Vectors by Checking its Determinant
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EXAMPLE 71. Determine if S = {[1 2 3], [0 1 2], [3 0 − 1]} is a linearly independent set of vectors in R3.

Solution. Forming the matrix whose rows are the vectors of S, we get

 1 2 3
0 1 2
3 0 −1


whose det(A) = 2 6= 0. Thus, S is linearly independent.

Let S1 and S2 be �nite subsets of a vector space and let S1 ⊆ S2. Then the following hold:

1. If S1 is linearly dependent, then S2 is also linearly dependent.

2. If S2 is linearly independent, then S1 is also linearly independent.

Linearly Independent/Dependent Subsets

Proof: Let S1 = {v1, v2, . . . , vk} and S2 = {v1, v2, . . . , vk, vk+1, . . . , vm}. Then S1 ⊆ S2. We �rst prove 1.
Since S1 is linearly dependent, there exist ai's not all zero such that a1v1 + a2v2 + · · ·+ akvk = 0. Then

a1v1 + a2v2 + · · ·+ akvk + 0vk+1 + · · ·+ 0vm = 0.

Since not all coe�cients of

a1v1 + a2v2 + · · ·+ akvk + 0vk+1 + · · ·+ 0vm

are zero and this equation is a linear combination of vectors of S2, we say that S2 is linearly dependent.

Statement 2 is the contrapositive of 1. �

Remarks:

1. S = {0} is linearly dependent. (Example: 3(0) = 0 and 3 6= 0)

2. If S is any set of vectors containing 0, then S must be linearly dependent. (why?)

3. A set of vectors consisting of a single nonzero vector is linearly independent. (why?)

4. If v1, v2, . . . , vk are vectors in a vector space V and any two of them are equal, then v1, v2, . . . , vk are
linearly dependent. (why?)
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THEOREM 19. The nonzero vectors v1, v2, . . . , vn in a vector space V are linearly dependent
if and only if one of the vectors vj for j ≥ 2 is a linear combination of the preceding vectors
v1, v2, . . . , vj−1.

Linear Combination of Preceding Vectors

EXAMPLE 72. Let V = R3 and v1 = [1 2 − 1], v2 = [1 − 2 1], v3 = [−3 2 − 1] and v4 = [2 0 0]. It can
be veri�ed that v1 + v2 + 0v3 − v4 = 0. Thus, v1, v2, v3, v4 are linearly dependent. By Theorem 19, we can
have v4 = v1 + v2 + 0v3.

Remarks:

1. Theorem 19 does not say that each vector v is a linear combination of the preceding vectors.

In Example 72, we can have v1 + 2v2 + v3 + 0v4 = 0. In this case, we cannot solve for v4 as linear
combination of v1, v2 and v3 since its coe�cient is zero.

2. If S = {v1, v2, . . . , vk} is a set of vectors in a vector space V , then S is linearly independent if and
only if one of the vectors in S is a linear combination of all other vectors in S. (Problem Set)

Example: v1 = −v2 − 0v3 + v4 and v2 = −
1

2
v1 −

1

2
v3 − 0v4

3. If {v1, v2, . . . , vk} are linearly independent vectors in a vector space, then they must be distinct and
nonzero.

THEOREM 20. Suppose that S = {v1, v2, . . . , vk} spans a vector space V and vj is a linear
combination of the preceding vectors in S. Then the set S1 = {v1, v2, . . . , vj−1, vj+1, . . . , vn}
consisting of S with vj deleted, also spans V .

Proof: Let v ∈ V . Since span S = V , there exist scalars a− 1, a2, . . . , an such that

v = a1v1 + a2v2 + · · · aj−1vj−1 + ajvj + aj+1vj+1 + · · ·+ anvn.

If vj = b1v1 + b2v2 + · · ·+ bj−1vj−1, then

v = a1v1 + a2v2 + · · · aj−1vj−1 + aj(b1v1 + b2v2 + · · ·+ bj−1vj−1) + aj+1vj+1 + · · ·+ anvn

and so v can be written as

v = c1v1 + c2v2 + · · ·+ cj−1vj−1 + cj+1vj+1 + · · ·+ cnvn.
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This implies that span S1 = V . �

EXAMPLE 73. Let S = {v1, v2, v3, v4} in R4, where

v1 =


1
1
0
0

 , v2 =


1
0
1
0

 , v2 =


0
1
1
0

 , v4 =


2
1
1
0


and suppose that W = span S.

Since v4 = v1 + v2, we can say that W = span S1 where S1 = {v1, v2, v3}.
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NAME:

1. Show that

S =


 2

1
3

 ,

 3
−1
2

 ,

 10
0
10


is a linearly dependent set in R3.

2. Determine whether
S = {[312], [38− 5], [−36− 9]}

is a linearly independent set in R3

3. Which of the given vectors in R3 are linearly dependent? For those which are, express one vector as
a linear combination of the rest.

(a) [1 1 0], [0 2 3], [1 2 3], [3 6 6]

(b) [1 1 0], [3 4 2]

(c) [1 1 0], [0 2 3], [1 2 3], [0 0 0]
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PROBLEM SET

DIRECTION: Write all your answers in a short bondpaper.
DEADLINE:

1. Let S = {v1, v2, . . . , vk} be a set of vectors in a vector space V . Prove that S is linearly dependent
if and only if one of the vectors in S is a linear combination of all the other vectors in S.

2. Suppose that S = {v1, v2, v3} is a linearly independent set of vectors in a vector space V . Prove that
T = {w1, w2, w3} is also linearly independent, where w1 = v1 + v2 + v3, w2 = v2 + v3 and w3 = v3.

3. Suppose that S = {v1, v2, v3} is a linearly independent set of vectors in a vector space V .

Is T = {w1, w2, w3}, where w1 = v1+ v2, w2 = v1+ v3, w− 3 = v2+ v3, linearly dependent or linearly
independent? Justify your answer.

4. Let S1 and S2 be �nite subsets of a vector space and let S1 ⊆ S2. If S2 is linearly dependent, why or
why not is S1 linearly dependent? Give an example.

5. Let S1 and S2 be �nite subsets of a vector space and let S1 ⊆ S2. If S1 is linearly independent, why
or why not is S2 linearly dependent? Give an example.



Chapter 13

Basis and Dimension

In this chapter, we continue our study of the structure of a vector space V by determining a set of vectors
in V that completely describes V . We combine in here the topics of span and linear independence.

The vectors v1, v2, . . . , vk in a vector space V are said to form a basis for V if

1. span {v1, v2, . . . , vk} = V and

2. {v1, v2, . . . , vk} is a linearly independent set.

Basis for a Vector Space

Remark: If v1, v2, . . . , vk form a basis for V , then they must be distinct and nonzero. The de�nition can
be applied to an in�nite set of vectors in a vector space.

EXAMPLE 74. The vectors

 1
0
0

 ,

 0
1
0

 ,

 0
0
1

 form a basis forR3. This is called the natural/standard

basis for R3.

We can generalize the natural basis for Rn.

In similar way, the vectors [1 0 0], [0 1 0], [0 0 1] form a natural basis for R3.

EXAMPLE 75. The set S = {t2 + 1, t− 1, 2t+ 2} is a basis for the vector space P2.

Solution. 1. Show: span S = P2 Let v ∈ P2. Then v = at2 + bt + c where a, b, c are scalars. In order
that v ∈ span S, there must exist scalars a1, a2, a3 such that

v = at2 + bt+ c = a1(t
2 + 1) + a2(t− 1) + a3(2t+ 2).

83
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Thus,
at2 + bt+ c = a1t

2 + (a2 + 2a3)t+ (a1 − a2 + 2a3).

Comparing the coe�cients of t2, t and the constants, we get

a1 = a

a2 + 2a3 = b

a1 − a2 + 2a3 = c

Solving this linear system, we have

a1 = a, a2 =
a+ b− c

2
, a3 =

c+ b− 1

4
.

This means that span S = V .

2. Show: S is linearly independent.

Write a1(t
2+1)+a2(t−1)+a3(2t+2) = 0. Then a1t

2+(a2+2a3)t+(a1−a2+2a3) = 0. Comparing
the coe�cients of t2, t and the constants, we get

a1 = 0

a2 + 2a3 = 0

a1 − a2 + 2a3 = 0

Solving this linear system we have a1 = a2 = a3 = 0. This means that S is linearly independent.

Combining 1 and 2, we conclude that S is a basis for P2.

EXAMPLE 76. The set of vectors {tn, tn−1, . . . , t, 1} is a natural basis for the vector space Pn.

Remark: Basis for a vector space is not unique based on last two examples.

PRACTICE:

1. The set W of all 2 × 2 matrices with trace equal to zero is a subspace of M22. Show that S =
{v1, v2, v3}, where

v1 =

[
0 1
0 0

]
, v2 =

[
0 0
1 0

]
, v3 =

[
1 0
0 −1

]
is a basis for W .

2. Find a basis for the subspace V of P2 consisting of all vectors of the form at2+bt+c, where c = a−b.

THEOREM 21. If S = {v1, v2, . . . , vn} is a basis for a vector space V , then every vector in V can
be written in one and only one way as a linear combination of the vectors in S.

Unique Linear Combination



85

Proof: Let v ∈ V . Since span S = V , v can be written as a linear combination of vectors in S. Suppose
that v = a1v1 + a2v2 + · · ·+ anvn and v = b1v1 + b2v2 + · · ·+ bnvn.

CLAIM: ai = bi for all i.

Now,

0 = v − v = (a1 − b1)v1 + (a2 − b2)v2 + · · ·+ (an − bn)vn.

Since S is linearly independent, ai = bi for all i. �

THEOREM 22. Let S = {v1, v2, . . . , vn} be a set of nonzero vectors in a vector space V and let
W = span S. Then some subset of S is a basis for W .

Proof: Case 1. S is linearly independent.

Since S is linearly independent and by assumption span S = W , S is a basis for W .

Case 2. S is linearly dependent.

Since S is linearly dependent, a1v1+a2v2+ · · ·+anvn = 0 where a1, a2, . . . , an are not all zero. By Theorem
19, some vj is a linear combination of the preceding vectors in S. Let S1 = S−{vj} ⊆ S. Then by Theorem
20, span S1 = W .

If S1 is linearly independent, then S1 is a basis. If S1 is linearly dependent, then one of the vectors of S1,
say vj is a linear combination of the preceding vectors.

Let S2 = S1 − {vj}. Then span S2 = W . �

Let V = Rm or Rm and let S = {v1, v2, . . . , vn} be a set of nonzero vectors in V . The procedure
for �nding a subset T of S that is a basis for W = span S is as follows:

1. Form equation
a1v1 + a2v2 + . . .+ anvn = 0.

2. Construct the augmented matrix associated with the homogeneous system of a1v1 + a2v2 +
. . .+ anvn = 0 and transform it to reduced row echelon form.

3. The vectors corresponding to the columns containing the leading 1's form a basis T for
W = span S.

Steps in Finding a Basis Subset
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EXAMPLE 77. Let V = R3 and S = {v1, v2, v3, v4}, where v1 = [1 0 1], v2 = [0 1 1], v3 = [1 1 2], v4 =
[1 2 1], and v5 = [−1 1 − 2].

It is easy to show that span S = W . Using above procedure:

Step 1.
a1[1 0 1] + a2[0 1 1] + a3[1 1 2] + a4[1 2 1] + a5[−1 1 − 2] = [0 0 0].

Step 2. Equating corresponding components, we obtain the homogeneous system

a1 + a3 + a4 − a5 = 0

a2 + a3 + 2a4 + a5 = 0

a1 + a2 + 2a3 + a4 − 2a5 = 0.

whose reduced row echelon form for the associated augmented matrix is

 1 0 1 0 −2 | 0
0 1 1 0 −1 | 0
0 0 0 1 1 | 0

 .

Step 3. The leading 1's appear in columns 1,2 and 4 so {v1, v2, v3} is a basis for R3.

THEOREM 23.

1. If S = {v1, v2, . . . , vn} is a basis for a vector space V and T = {w1, w2, . . . , wn} is a linearly
independent set of vectors in V , then r ≤ n.

2. If S = {v1, v2, . . . , vn} and T = {w1, w2, . . . , wn} are bases for a vector space V , then n = m

Proof: (Assignment) �

Some more results:

Practice:

I. Which of the following sets of vectors are bases for R2?

1.

{[
1
3

]
,

[
1
−1

]}

2.

{[
0
0

]
,

[
1
2

]
,

[
2
4

]}

II. Find a basis for the subspace W of R3 spanned by


 1

2
2

 ,

 3
2
1

 ,

 11
10
7

 ,

 7
6
4


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PROBLEM SET

DIRECTION: Write all your answers in a short bondpaper.
DEADLINE:

1. Let c 6= 0. If {v1, v2, . . . , vk} is a basis for a vector space V , then If {cv1, cv2, . . . , cvk} is also a basis
for a vector space V .

2. Find a basis for the subspace of R3:

All vectors of the form

 a
b
c

, where b = a+ c.
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Although a vector space may have many bases, we have just shown that, for a particular vector space V ,
all bases have the same number of vectors. We can then make the following de�nition:

The dimension of a nonzero vector space V is the number of vectors in a basis for V . We often
write dim V for the dimension of V . We also de�ne the dimension of the trivial vector space {0}
to be zero.

Dimension

EXAMPLE 78. The set S = {t2, t, 1} is a basis for P2. Thus, dim P2 = 3.

Let S be a set of vectors in a vector space V . A subset T of S is called a maximal independent
subset of S if T is a linearly independent set of vectors that is not properly contained in any other
linearly independent subset of S.

Maximal Independent Subset

EXAMPLE 79. Let V = R3 and consider the set S = {v1, v2, v3, v4}, where

v1 =

 1
0
0

 , v2 =

 0
1
0

 , v3 =

 0
0
1

 , v4 =

 1
1
1

 .

Maximal independent subsets of S are {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4} and {v2, v3, v4}.

THEOREM 24. If the vector space V has dimension n, then a maximal independent subset of
vectors in V contains n vectors.

Corollary

Proof: Let S = {v1, v2, . . . , vk} be a maximal independent subset of V . If span S 6= V , then there
exists a vector v ∈ V that cannot be written as a linear combination of v1, v2, . . . , vk. It follows that
{v1, v2, . . . , vk, v} is a linearly independent set of vectors. This is a contradiction to the asusmption that S
is a maximal independent subset of V . Thus, span S = V . This means that S is a basis for V . Therefore,
k = n. �
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THEOREM 25.

1. If a vector space V has dimension n, then a minimal spanning set for V contains n vectors.

2. If a vector space V has dimension n, then any subset of m > n vectors must be linearly
dependent.

3. If a vector space V has dimension n, then any subset of m < n vectors cannot span V .

Some more results

Proof: (Problem Set)

Results:

1. R3 has dimension 3, R2 has dimension 2, and Rn and Rn both have dimension n.

2. P3 has dimension 4 since {t3, t2, t, 1} is a basis for P3. In general, Pn has dimension n+ 1.

3. The subspaces of R2 are {0}, R2 and any line passing through the origin.

4. The subspaces of R3 are {0}, R3 and all lines and planes passing through the origin.

THEOREM 26. If S is a linearly independent set of vectors in a �nite-dimensional vector space
V , then there is a basis T for V that contains S.

Proof: Let S = {v1, v2, . . . , vm} be a linearly independent set of vectors in the nth dimensional vector space
V , where m < n. Now let {w1, w2, . . . , wn} be a basis for V . Let S1 = {v1, v2, . . . , vm, w1, w2, . . . , wn}.
Since span S1, by Theorem 22, it contains a basis T for V . Note that T is obtained by deleting from S1

every vector that is a linear combination of the preceding vectors. Since S is linearly independent, none of
the vi can be linear combinations of other vj and thus are not deleted. Hence, T will contain S. �

EXAMPLE 80. Find a basis for R4 that contains the vectors v1 = [1 0 1 0] and v2 = [−1 1 − 1 0].

Solution. Let {e1, e2, e3, e4} be the natural basis for R4, where

e1 = [1000], e2 = [0100], e3 = [0010], e4 = [0001].

Set S = {v1, v2, e1, e2, e3, e4}. Since {e1, e2, e3, e4} spans R4, span S = R4.

We now �nd a subset of S that is a basis for R4.
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Form equation

a1v1 + a2v2 + a3e3 + a4e2 + a5e3 + a6e4 = [0 0 0 0].

This leads to the homogeneous system

a1 − a2 + a3 = 0

−a2 + a4 = 0

a1 − a2 + a5 = 0

a6 = 0.

whose augmented matrix transformed to reduced row echelon form is


1 0 0 1 1 0 | 0
0 1 0 1 0 0 | 0
0 0 1 0 −1 0 | 0
0 0 0 0 0 1 | 0

 .

Since leading 1's appear in columns 1, 2,3, and 6, we say that {v1, v2, e1, e4} is a basis for R4 containing
v1 and v2.

THEOREM 27. Let V be an n-dimensional vector space. Then

1. If S = {v2, v2, . . . , vn} is a linearly independent set of vectors in V , then S is a basis for V .

2. If S = {v2, v2, . . . , vn} spans V , then S is a basis for V .

Proof: (Problem Set)

EXAMPLE 81. To determine whether a subset of Rn (or Rn) is a basis for Rn (or Rn), we count the
number of elements in S. If S has n elements, we use part 1 or 2 of Theorem 27.

If S does not have n elements, it is not a basis for Rn (or Rn). (why?)

For instance, dim R3 = 3. Let S contain 4 vectors. Then by Theorem 27, S is not a basis for R3.

EXAMPLE 82. Note that dim R4 = 4. Let S be a set that contains 4 vectors. Then it is possible for S
to be a basis for R4.

If S is linearly independent or spans R4, then S is a basis.
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Recall: If a set S of n vectors in Rn (or Rn) is linearly independent, then S spans Rn (or Rn).

If S spans Rn (or Rn), then S is linearly independent.

This means that the condition in Theorem is also necessary and su�cient for S to span Rn (or Rn).

THEOREM 28. Let S be a �nite subset of the vector space V that spans V . A maximal
independent subset T of S is a basis for V .

Proof: (Problem Set)
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PROBLEM SET

DIRECTION: Write all your answers in a short bondpaper.
DEADLINE:

1. If a vector space V has dimension n, then a minimal spanning set for V contains n vectors.

2. If a vector space V has dimension n, then any subset of m > n vectors must be linearly dependent.

3. If a vector space V has dimension n, then any subset of m < n vectors cannot span V .

4. Let V be an n-dimensional vector space. If S = {v2, v2, . . . , vn} is a linearly independent set of
vectors in V , then S is a basis for V .

5. Let V be an n-dimensional vector space. If S = {v2, v2, . . . , vn} spans V , then S is a basis for V .

6. If W is a subspace of a �nite dimensional vector space V , then W is �nite dimensional and
dim W ≤ dim V .

7. Let S be a �nite subset of the vector space V that spans V . A maximal independent subset T of S
is a basis for V .
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