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Abstract

In this paper, the concepts of absolute µSp-open, absolute µSp-closed
functions, absolute µSp-continuity, and µSp-connectedness in
generalized topological spaces are introduced and some of their
properties are established.
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1 Introduction

The idea of µSp-open and µSp-closed sets in the generalized topological
space was introduced in [1]. In order to relate two GT-spaces X and Y , we
shall define absolute µSp-open functions, absolute µSp-closed functions, and
absolute µSp-continous functions.

Throughout this paper, the space (X,µ) (or simply X) always means a
generalized topological space (GT-space) on which no separation axioms are
assumed unless explicitly stated. For a subset A of a GT-space X, µSpcµ(A),
µSpiµ(A), and X\A denote the µSp-closure of A, µSp-interior of A, and
complement of A in X, respectively.

∗This research is funded by the Department of Science and Technology-Accelerated
Science and Technology Human Resource Development Program (DOST-ASTHRDP).
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2 Preliminaries

In [1], Benjamin, P. L and Rara, H. M defined a subset A of a GT-space
X to be µSp-open if A is µ-semiopen and for every x ∈ A, there exists a
µ-preclosed set F such that x ∈ F ⊆ A. The complement of a µSp-open set
is called a µSp-closed set. The collection of all µSp-open sets in X forms a
strong generalized topology but not always a topology on X and the arbitrary
intersection of µSp-closed sets inX is µSp-closed. The union of all the µSp-open
sets of a GT-space X contained in A is called the µSp-interior of A, denoted
by µSpiµ(A). The intersection of all the µSp-closed sets of X containing A is
called the µSp-closure of A, denoted by µSpcµ(A).

Definition 2.1 A function f : (X,µX)→ (Y, µY ) is called
(i) absolute µSp-open if the image f(A) is µY Sp-open in Y for each µXSp-open
set A in X;
(ii) absolute µSp-closed if the image f(A) is µSp-closed for each µSp-closed set
A in X;
(iii) absolute µSp-continuous [1] if for every µY Sp-open subset U of Y , f−1(U)
is µXSp-open in X;

3 Absolute µSp-Continuous Functions

In topological spaces, continuous functions send the inverse image of an open
set into an open set. The definiton of absolute µSp-continuous functions seems
to be parallel to this. Moreover, its properties behave similarly.

Theorem 3.1 If f : (X,µX) → (Y, µY ) and g : (Y, µY ) → (Z, µZ) are both
absolute µSp-continuous, then g ◦ f : X → Z is absolute µSp-continuous.

Proof : Let U be µZSp-open in Z. Then g−1(U) is µY Sp-open since g is absolute
µSp-continuous. Thus, f−1(g−1(U)) = (g ◦ f)−1(U) is µXSp-open since f is
absolute µSp-continuous. Therefore, g ◦ f is absolute µSp-continous. �

Theorem 3.2 Let f : (X,µX) → (Y, µY ) be a function. The following
statements are equivalent:
(i) f is µSp-continuous.
(ii) For each x ∈ X, and each µY -open set V containing f(x), there exists a
µXSp-open set U containing x such that f(U) ⊆ V .
(iii) f−1(F ) is µXSp-closed in X for every µY -closed set F in Y .
(iv) f(µXSpcµX (A)) ⊆ cµY (f(A)) for every A ⊆ X.
(v) µXSpcµX (f−1(B)) ⊆ f−1(cµY (B)) for every B ⊆ Y .
(vi) f−1(iµY (B)) ⊆ µXSpiµX (f−1(B)) for every B ⊆ Y .



Absolute µSp-functions and µSp-connectedness 4301

(vii) iµY (f(A)) ⊆ f(µXSpiµX (A)) for every subset A of X whenever f is
bijective.

Proof : (i) ⇒ (ii): Let x ∈ X and let V be a µY -open set with f(x) ∈ V .
Since f is µSp-continuous, f−1(V ) is µXSp-open in X and x ∈ f−1(V ). Take
U = f−1(V ) so that f(U) ⊆ V with x ∈ U .
(ii)⇒ (i): Let V be any µY -open set in Y and let x ∈ f−1(V ). Then f(x) ∈ V .
By (2), there exists a µXSp-open set Ux such that x ∈ Ux and f(Ux) ⊆ V . Since⋃
x∈f−1(V )

Ux is a µXSp-open set in X, f−1(V ) =
⋃

x∈f−1(V )

Ux is a µXSp-open set.

Therefore, f is µSp-continuous.
(i)⇔ (iii): Let f be a µSp-continuous function and F be any µY -closed set in Y .
Then Y \F is µY -open. Since f is µSp-continuous, f−1(Y \F ) is µXSp-open.
Now, f−1(Y \F ) = f−1(Y )\f−1(F ) = X\f−1(F ). Hence, f−1(F ) is µXSp-
closed in X. Conversely, let F be a µY -open set in Y . Then Y \F is µY -closed.
By assumption, f−1(Y \F ) is µXSp-closed in X. Since
f−1(Y \F ) = X\f−1(F ), f−1(F ) is µXSp-open. Therefore, f is µSp-continuous.
(iii)⇒ (iv): Let A be any subset of X. Then f(A) ⊆ cµY (f(A)) and cµY (f(A))
is a µY -closed set in Y . By assumption, f−1(cµY (f(A))) is a µXSp-closed set
in X. Hence, µSpcµX (A) ⊆ f−1(cµY (f(A))). Therefore,

f(µXSpcµX (A)) ⊆ cµY (f(A)).

(iv) ⇒ (v): Let B ⊆ Y . Then f−1(B) is a subset of X. By (iv),

f(µXSpcµX (f−1(B))) ⊆ cµY f(f−1(B)) ⊆ cµY (B).

Thus, µXSpcµX (f−1(B)) ⊆ f−1(cµY (B)).
(v) ⇒ (vi): Let B ⊆ Y . Since µXSpcµX (f−1(Y \B)) = X\µXSpiµX (f−1(B))
and f−1(cµY (Y \B) = f−1(Y \iµY (B)) = X\f−1(iµY (B)). Applying (v) to
Y \B, we have µXSpcµX (f−1(Y \B)) ⊆ f−1(cµY (Y \B)). It follows that

f−1(iµY (B)) ⊆ µXSpiµX (f−1(B)).

(vi)⇒(vii): Let A be any subset of X and f be an injective function. Then by
(vi), f−1(iµY (f(A))) ⊆ µXSpiµX (A). Therefore, iµY (f(A)) ⊆ f(µXSpiµX (A)).
(vii) ⇒ (i): Let V be a µY -open subset of Y and f be a surjective function.
Then by (vii), iµY (f(f−1(V ))) ⊆ f(µXSpiµX (f−1(V ))). Thus,

iµY (V ) ⊆ f(µXSpiµX (f−1(V ))).

Since V is µY -open, V ⊆ f(µXSpiµX (f−1(V ))) so that

f−1(V ) ⊆ µXSpiµX (f−1(V )).

Hence, µXSpiµX (f−1(V )) = f−1(V ) which is µXSp-open. Therefore, f is µSp-
continuous. The proof is complete. �
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Remark 3.3 Let (X,P(X)) be a GT-space. Then A is µSp-open for every
A ⊆ X. In particular, in the space 2 = ({0, 1},P({0, 1})), every subset of
{0, 1} is µSp-open.

Theorem 3.4 Let X be a GT-space and let χ
A

: X → 2 be the characteristic
function of a subset A of X. Then χA is absolute µSp-continuous if and only
if A is both µSp-open and µSp-closed.

Proof : Suppose that χA is absolute µSp-continuous. Let O1 = {1} and
O2 = {0}. Then O1 and O2 are µSp-open in {0, 1}. Since χ

A
is absolute

µSp-continuous, χ−1
A

(O1) = A and χ−1
A

(O2) = X\A are µSp-open sets in X.
Thus, A is both µSp-open and µSp-closed.

Conversely, let A be both µSp-open and µSp-closed in X. Let O be a
µSp-open set in {0, 1}. Then

χ−1
A

(O) =


∅ if O = ∅,
X if O = {0, 1},
A if O = {1},
X\A if O = {0}.

It means that χ−1
A

(O) is µSp-open. Therefore, χA is absolute µSp-continuous.
This completes the proof. �

Theorem 3.5 Let f : (X,µX) → (Y, µY ) and g : (Y, µY ) → (Z, µZ) be
mappings such that the composition g ◦ f : X → Z is absolute µSp-closed.
If f is absolute µSp-continuous and surjective, then g is absolute µSp-closed.

Proof : Let f be absolute µSp-continuous and surjective and let A be a µY Sp-
closed subset of Y . Since f is absolute µSp-continuous, f−1(A) is µXSp-closed
in X. Since g ◦ f is µSp-closed, (g ◦ f)(f−1(A)) is µZSp-closed in Z. Since
f is surjective, (g ◦ f)(f−1(A)) = g(f(f−1(A))) = g(A) is also µSp-closed.
Therefore, g(A) is an µZSp-closed set in Z and g is an absolute µSp-closed
function. �

4 Absolute µSp-open and Absolute µSp-closed

Functions

This section includes some properties of absolute µSp-open and absolute µSp-
closed functions.

Theorem 4.1 Let f : (X,µX) → (Y, µY ) be a bijective function. Then the
following statements are equivalent:
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1. f is absolute µSp-open.

2. f is absolute µSp-closed.

3. f(µXSpiµX (A)) ⊆ µY SpiµY (f(A)) for every A ⊆ X.

4. For each subset W of Y and each µXSp-open set U containing f−1(W ),
there exists a µY Sp-open set V of Y such that W ⊆ V and f−1(V ) ⊆ U .

5. For every subset S of Y and for every µXSp-closed set F of X containing
f−1(S), there exists a µY Sp-closed set K of Y containing S such that
f−1(K) ⊆ F .

6. f−1(µY SpcµY (B)) ⊆ µXSpcµX (f−1(B)) for every subset B of Y .

7. µY SpcµY (f(A)) ⊆ f(µXSpcµX (A)) for every subset A of X.

Proof :
(1)⇔ (2): Let f be µSp-open and D be µXSp-closed in X. Then X\D is µXSp-
open and f(X\D) is µY Sp-open. Since f is bijective, Y \f(D) = f(X\D) is
µY Sp-open. Thus, f(D) is µY Sp-closed.

Conversely, let f be µSp-closed and suppose that O is a µXSp-open set in
X. Then X\O is µXSp-closed and f(X\O) = Y \f(O) is µY Sp-closed. There-
fore, f(O) is µY Sp-open.
(1) ⇔ (3): Let A ⊆ X and suppose that f is absolute µSp-open. Since
µXSpiµX (A) is µXSp-open and f is absolute µSp-open, f(µXSpiµX (A)) is µY Sp-
open. Also, µXSpiµX (A) ⊆ A implies that f(µXSpiµX (A)) ⊆ f(A). Thus,
f(µXSpiµX (A)) ⊆ µY SpiµY (f(A)) by definition of µY SpiµY (f(A)).

Conversely, let O be a µXSp-open set in X. Then µXSpiµX (O) = O and
f(µXSpiµX (O)) = f(O) ⊆ µY SpiµY (f(O)) ⊆ f(O). Hence, µY SpiµY (f(O)) =
f(O). Since µY SpiµY (f(O)) is µY Sp-open, f(O) is µY Sp-open. Therefore, f is
an absolute µSp-open function.
(2) ⇔ (7): Let A ⊆ X and suppose that f is absolute µSp-closed. Since
A ⊆ cµX (A), f(A) ⊆ f(µXSpcµX (A)). Moreover, since µXSpcµX (A) is µXSp-
closed in X, f(µXSpcµX (A)) is µY Sp-closed. Therefore, µY SpcµY (f(A)) ⊆
f(µXSpcµX (A)).

Conversely, let O be µXSp-closed. Then µXSpcµX (O) = O and
f(µXSpcµX (O)) = f(O). Since f(O) ⊆ µY SpcµY (f(O)) ⊆ f(µXSpcµX (O)) =
f(O), µY SpcµY (f(O)) = f(O). Since µY SpcµY (f(O)) is µY Sp-closed, f(O) is
µY Sp-closed. Therefore, f is an absolute µSp-closed function.
(1) ⇔ (5): Suppose that f is absolute µSp-open. Let S ⊆ Y and F be a
µXSp-closed subset of X such that f−1(S) ⊆ F . Now, X\F is a µXSp-open
set in X. Since f is absolute µSp-open, f(X\F ) is µY Sp-open in Y . Then
K = Y \f(X\F ) is a µY Sp-closed set in Y . Since f−1(S) ⊆ F , X\F ⊆
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X\f−1(S) = f−1(Y \S). Thus, f(X\F ) ⊆ f(f−1(Y \S)) ⊆ Y \S. Hence
Y \(Y \S) ⊆ Y \f(X\F ) implying that S ⊆ K and

f−1(K) = X\f−1(f(X\F )) ⊆ X\(X\F ) = F.

For the converse, let U be a µXSp-open set in X. Since X\U is µXSp-closed
and f−1(Y \f(U)) = X\(f−1(f(U))) ⊆ X\U , by assumption, there exists a
µY Sp-closed subset K of Y such that Y \f(U) ⊆ K and f−1(K) ⊆ X\U so
that U ⊆ X\f−1(K). Hence, Y \K ⊆ f(U) ⊆ f(X\f−1(K)) ⊆ Y \K. This
implies that f(U) = Y \K. Since Y \K is µY Sp-open, f(U) is µY Sp-open in Y .
Therefore, f is absolite µSp-open.
(2)⇔ (4): Similar to (1)⇔ (5).
(1)⇔ (6): Suppose that f : X → Y is an absolute µSp-open function and let
B be any subset of Y . Since f−1(B) ⊆ cµX (f−1(B)) and µXSpcµX (f−1(B))
is µXSp-closed in X, by (1) ⇔ (5), there exists a µY Sp-closed set K of Y
such that B ⊆ K and f−1(K) ⊆ cµX (f−1(B)). Hence, µY SpcµY (B) ⊆ K.
Therefore, f−1(µY SpcµY (B)) ⊆ f−1(K) ⊆ µXSpcµX (f−1(B)).

Conversely, let O be a µX-open set in X. Then X\O is µX-closed and
f−1(µY SpcµY (f(X\O))) ⊆ X\O. Also, X\O ⊆ f−1(µY SpcµY (f(X\O))) and
µY SpcµY (f(X\O)) = Y \f(O). Since µY SpcµY (f(X\O)) is µY Sp-closed, f(O)
is µY Sp-open. Therefore, f is an absolute µSp-open function. �

Theorem 4.2 If f : X → Y and g : Y → Z are both absolute µSp-open
functions, then the composition g ◦ f : X → Z is absolute µSp-open.

Proof : Let F be any µSp-open set in X. Since f is absolute µSp-open, f(F )
is µSp-open in Y . Because g is absolute µSp-open, g(f(F )) is µSp-open in Z.
Thus, (g ◦ f)(F ) = g(f(F )) is µSp-open and hence g ◦ f is µSp-open. �

Theorem 4.3 For a bijection map f : X → Y , the following are
equivalent:

(a) f−1 : Y → X is absolute µSp-continuous.

(b) f is absolute µSp-open.

(c) f is absolute µSp-closed.

Proof : (a)⇒(b): Let U be a µSp-open set of X. By hypothesis,
(f−1)−1(U) = f(U) is µSp-open in Y so that f is µSp-open.
(b)⇒(c): Let F be a µSp-closed set of X. Then X\F is µSp-open in X.
By assumption, f(X\F ) is µSp-open in Y . Since f is bijective, X\f(F ) =
f(X\F ) is µSp-open in Y . Hence, f(F ) is µSp-closed in Y . Therefore, f is
µSp-closed.
(c)⇒(a): Let F be a µSp-closed set of X. By (c), f(F ) is µSp-closed in Y .
But f(F ) = (f−1)−1(F ). Thus, f−1 is µSp-continuous. �
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5 µSp-connectedness

Definition 5.1 A GT-space (X,µ) is µSp-connected if it is not the union of
two nonempty disjoint µSp-open sets. Otherwise, the space (X,µ) is
µSp-disconnected.

Remark 5.2 A space (X,µ) is µSp-disconnected if there exist a disjoint
nonempty µSp-open sets A and B such that X = A ∪ B. The set A ∪ B
is called the µSp-decomposition of X.

Theorem 5.3 Let (X,µ) be a GT-space. Then the following statements are
equivalent:

(a) X is µSp-connected.

(b) The only subsets of X both µSp-open and µSp-closed are ∅ and X.

(c) No absolute µSp-continuous function f : X → 2 is surjective, where 2 is
the space {0, 1} with the discrete topology.

Proof : (a)⇒(b) Let G be both µSp-open and µSp-closed set in X and suppose
that G 6= ∅, X. Then G ∪ X\G is an µSp-decomposition of X. It follows
that X is not µSp-connected. Thus, the only subsets of X both µSp-open and
µSp-closed are ∅ and X.
(b)⇒(c) Suppose that f : X → 2 is µSp-continuous and surjective. Then
f−1({0}) 6= ∅, X. Since {0} is both µSp-open and µSp-closed in 2, f−1({0})
is both µSp-open and µSp-closed. This is a contradiction to our hypothesis.
Thus, no µSp-continuous function f : X → 2 is surjective.
(c)⇒(a) Suppose that X is µSp-disconnected. Then X = A ∪ B, where A
and B are disjoint nonempty µSp-open sets. It follows that A and B are
also µSp-closed sets in X. Now, consider the characteristic function χA. By
Theorem 3.4, χA is absolute µSp-continuous and surjective. This contradicts
our assumption. Therefore, A is µSp-connected. �

Theorem 5.4 The absolute µSp-continuous image of an µSp-connected space
is µSp-connected.

Proof : Let X be a µSp-connected space and let f : X → f(X) be an absolute
µSp-continuous function. Suppose that f(X) is µSp-disconnected. Then there
exists an absolute µSp-continuous surjection g : f(X) → 2 by Theorem 5.3.
By Theorem 3.1, the composition of two absolute µSp-continuous functions is
absolute µSp-continuous. Thus, g ◦ f : X → 2 is an absolute µSp-continuous
surjection which is a contradiction to Theorem 5.3. Therefore, f(X) is µSp-
connected. �
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Theorem 5.5 The union of any family of µSp-connected GT-spaces having at
least one point in common is also µSp-connected.

Proof : Let {Xα : α ∈ I} be a collection of µSp-connected sets in X, and let
X = ∪αXα, where Xα are µSp-connected for each α. Suppose that
xo ∈ ∩αXα and f : X → 2 be an absolute µSp-continuous function. Since
each Xα is µSp-connected, f |Aα is not surjective. Moreover, since xo ∈ ∩αXα,
f(x) = f(xo) for all x ∈ Xα for each α. Therefore, f cannot be surjective. By
Theorem 5.3, X = ∪αXα is µSp-connected. �
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Abstract

In this paper, the concept of rw-connectedness and rw-sets in the
product space is studied. Specifically, this paper characterized rw-
connectedness in terms of rw-open and rw-closed sets and rw-continuous
functions. This also established some results involving regular open, reg-
ular semiopen, rw-interior, and rw-closed sets in the product of subsets
of a topological space.
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1 Introduction

In 1937, Stone [6] introduced and investigated the regular open sets. These
sets are contained in the family of open sets since a set is regular open if it is
equal to the interior of its closure. In 1978, Cameron [2] also introduced and
investigated the concept of a regular semiopen set. A set A is regular semiopen
if there is a regular open set U such that U ⊆ A ⊆ U . In 2007, a new class of
sets called regular w-closed sets (rw-closed sets) was introduced by Benchalli

1This research is funded by the Department of Science and Technology-Philippine Council
for Advanced Science and Technology Research and Development (DOST-PCASTRD).
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and Wali [1]. A set B is rw-closed if B ⊆ U whenever B ⊆ U for any regular
semiopen set U . They proved that this new class of sets is properly placed
in between the class of w-closed sets [5] and the class of regular generalized
closed sets [4].

In this paper, the concepts of rw-connectedness and rw-open sets in the
product space are further investigated.

Throughout this paper, space (X, T) (or simply X) always means a topolog-
ical space on which no separation axioms are assumed unless explicitly stated.
For a subset A of a space X, A, int(A), and C(A) denote the closure of A,
interior of A, and complement of A in X, respectively.

2 Preliminaries

Definition 2.1 [1] A function f : X → Y is called
(i) rw-open if the image f(A) is rw-open in Y for each open set A in X.
(ii) rw-closed if the image f(A) is rw-closed for each closed set A in X.
(iii) rw-continuous if for every open subset U of Y , f−1(U) is rw-open in X.
(iv) regular strongly continuous (briefly rs-continuous) if the inverse image of
every rw-open set in Y is open in X, that is, f−1(A) is open in X for all
rw-open sets A in Y .

3 rw-connectedness

Definition 3.1 A space (X, T) is rw-connected if it is not the union of two
nonempty disjoint rw-open sets. Otherwise, a space (X, T) is
rw-disconnected. A subset A of a topological space is rw-connected if it is
rw-connected as a subspace of X.

Remark 3.2 A space (X, T) is rw-disconnected if there exist a disjoint nonempty
rw-open sets A and B such that X = A ∪ B. The set A ∪ B is called the rw-
decomposition of X.

Theorem 3.3 Let X be any space and let χA : X → 2 be the characteristic
function of a subset A of X. Then χA is rw-continuous if and only if A is
both rw-open and rw-closed.

Proof : Suppose that χA is rw-continuous. Let O1 = {1} and O2 = {0}. Then
O1 and O2 are open in {0, 1}. Since χA is rw-continuous, χ−1

A (O1) = A and
χ−1

A (O2) = C(A) are rw-open sets in X. Thus, A is both rw-open and rw-
closed.
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Conversely, let A be both rw-open and rw-closed in X. Let O be an open
set in {0, 1}. Then

χ−1
A (O) =

⎧⎪⎪⎨
⎪⎪⎩

∅ if O = ∅

X if O = {0, 1}
A if O = {1}
C(A) if O = {0}.

It means that χ−1
A (O) is rw-open. Therefore, χA is rw-continuous. �

Theorem 3.4 Let (X, T) be a topological space. Then the following
statements are equivalent:

(a) X is rw-connected.

(b) The only subsets of X both rw-open and rw-closed are ∅ and X.

(c) No rw-continuous function f : X → 2 is surjective, where 2 is the space
{0, 1} with the discrete topology.

Proof : (a)⇒(b) Let G be both rw-open and rw-closed set in X and suppose
that G �= ∅, X. Then G ∪ C(G) is an rw-decomposition of X. It follows
that X is not rw-connected. Thus, the only subsets of X both rw-open and
rw-closed are ∅ and X.
(b)⇒(c) Suppose that f : X → 2 is rw-continuous and surjective.
Then f−1({0}) �= ∅, X. Since {0} is both open and closed in 2, f−1({0})
is both rw-open and rw-closed. This is a contradiction to our hypothesis.
Thus, no rw-continuous function f : X → 2 is surjective.
(c)⇒(a) Suppose that X is rw-disconnected. Then X = A ∪ B, where A
and B are disjoint nonempty rw-open sets. It follows that A and B are also
rw-closed sets in X. Now, consider the characteristic function χA. By Theo-
rem 3.3, χA is rw-continuous and surjective. This contradicts our assumption.
Therefore, A is rw-connected. �

Theorem 3.5 Every rw-connected space is connected.

Proof : Suppose that a space X is rw-connected and X is not connected. Then
there exist two nonempty disjoint open sets O1 and O2 such that X = O1∪O2.
Thus X is also the union of two nonempty disjoint rw-open sets. Thus, X is
not rw-connected which is a contradiction. Therefore, X is connected. �

Remark 3.6 The converse of Theorem 3.5 is not true.
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To see this, consider the space (X, T) where X = {a, b, c} and
T = {∅, X, {a}, {b}, {a, b}}. Then the possible decomposition of X is
{a, b} ∪ {c} but {c} is not open. Thus, X is connected. The rw-open sets
in X are X, ∅, {a}, {b}, {c}, and {a, b}. Now, X = {a, b} ∪ {c} implying that
X is rw-disconnected.

Theorem 3.7 The rw-continuous image of an rw-connected set is connected.

Proof : Let X be an rw-connected set and let f : X → f(X) be an
rw-continuous function. Supopose that f(X) is disconnected. Then by there
exists a continuous surjection g : f(X) → 2. Hence,
g ◦ f : X → 2 is an rw-continuous surjection which is a contradiction to
Theorem 3.4. Therefore, f(X) is connected. �

4 rw-sets in the Product Space

Throughout this section, let {Yα| α ∈ A} be family of topological spaces,∏
{Yα| α ∈ A} be the cartesian product space, Ai and Bi are subsets of Yi.

Theorem 4.1 If A and B are subsets of X with A ⊆ B, then rw-(A) ⊆ rw-
(B).

Lemma 4.2

n∏
i=1

Bi is regular open if and only if Bi is regular open for every

i = 1, 2, ..., n.

Proof : Let

n∏
i=1

Bi be a regular open set. Then

int

(
n∏

i=1

Bi

)
= int

(
n∏

i=1

Bi

)
=

n∏
i=1

int(Bi) =
n∏

i=1

Bi.

Therefore, int(Bi) = Bi. Hence, Bi is regular open.
The converse is proved similarly. �

Lemma 4.3 If Ai is regular semiopen for every i = 1, 2, ..., n, then

n∏
i=1

Ai is

regular semiopen.
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Proof : Let Ai be regular semiopen for every i = 1, 2, ..., n. Then there exists a

regular open Ui such that Ui ⊆ Ai ⊆ Ui. By Theorem 4.2,

n∏
i=1

Ui is regular open

and
n∏

i=1

Ui ⊆
n∏

i=1

Ai ⊆
n∏

i=1

Ui =

n∏
i=1

Ui. Therefore

n∏
i=1

Ai is regular semiopen. �

Remark 4.4 If A is regular open (regular semiopen) in

n∏
i=1

Yi, then A is not

necessarily a cartesian product of regular open (regular semiopen) sets in Yi.

Lemma 4.5 If

n∏
i=1

Fi is rw-closed in

n∏
i=1

Xi, then Fi is rw-closed in Xi for

every i = 1, 2, ..., n.

Proof : Suppose that
n∏

i=1

Fi is rw-closed in
n∏

i=1

Xi and let Fi ⊆ Ui where Ui is

regular semiopen. Then

n∏
i=1

Fi ⊆
n∏

i=1

Ui. Since

n∏
i=1

Fi is rw-closed and

n∏
i=1

Ui is

regular semiopen by Lemma 4.3,
n∏

i=1

Fi ⊆
n∏

i=1

Ui. But
n∏

i=1

Fi =
n∏

i=1

Fi ⊆
n∏

i=1

Ui

implies that Fi ⊆ Ui for every i = 1, 2, ..., n. Therefore, Fi is rw-closed for
every i = 1, 2, ..., n. �

Lemma 4.6 rw-int(A) = C(rw-(C(A)).

Proof :

x ∈ rw-int(A) ⇔ x ∈ O for some rw -open set O with O ⊆ A

⇔ x /∈ C(O) for some rw -closed set C(O)

with C(A) ⊆ C(O)

⇔ x /∈ rw-(C(A))

⇔ x ∈ C(rw-(C(A)))

This completes the proof. �

Lemma 4.7 rw-int(A) = C(rw-(C(A)).
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Proof :

x ∈ rw-int(A) ⇔ x ∈ O for some rw -open set O with O ⊆ A

⇔ x /∈ C(O) for some rw -closed set C(O)

with C(A) ⊆ C(O)

⇔ x /∈ rw-(C(A))

⇔ x ∈ C(rw-(C(A)))

This completes the proof. �

Theorem 4.8 rw-int

(
n∏

i=1

Ai

)
=

n∏
i=1

rw-int(Ai).

Proof : By Lemma 4.7, and Theorem 4.1,

rw-int

(
n∏

i=1

Ai

)
= C

(
rw-

(
C(

n∏
i=1

Ai)

))

= C

(
rw-

(
n⋃

i=1

〈C(Ai)〉
))

= C

(
n⋃

i=1

rw-(〈C(Ai)〉)
)

=

n⋂
i=1

C(rw-(〈C(Ai)〉))

=
n⋂

i=1

〈
C(rw-(C(Ai)))

〉

=

n⋂
i=1

〈rw-int(Ai)〉

=

n∏
i=1

rw-int(Ai). �
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Abstract: We introduce a non-unital and non-commutative ring Sm(F1), called

ring of ordered sum over F2, the binary field. We discuss linear codes over this ring,

also known as Sm-codes, and their algebraic structure, particularly, their residue and

torsion codes. We explore the generalized notion of duality of Sm-codes.

Keywords Self-orthogonal codes, Self-dual codes, Quasi self-dual codes, Type IV

codes, Non-unital ring

1 INTRODUCTION

Self-dual codes and self-orthogonal codes, and conse-
quently, Type IV codes, which are self-dual codes where
all the codewords have even weight, have been studied
extensively for their vast applications. Many examples
of these types of codes have good parameters. Classi-
cally, these codes are defined over finite fields. Recently,
there have been great interest in codes over finite rings.
However, these rings are often commutative, and most
of the time, unital [?, ?, ?]. If the ring is noncommuta-
tive and without the unity, the usual notion of duality as
in finite fields and other commutative rings [?, ?] have
to be reconsidered. In particular, left and right duals
need to be defined, as in quasi-self dual (QSD) codes.

In this paper, we introduce the ring Sm(F2), called
the ring of ordered sum over the binary field F2, defined
as

Sm(F2) = {(a1, a2 . . . , am)|a1, a2 . . . , am ∈ F2}

together with the following binary operations, addition
and multiplication respectively,

(a1, . . . , am) + (b1, . . . , bm) = (a1 + b1, . . . , am + bm),

(a1, . . . , am) · (b1, . . . , bm) =

(
a1

m∑
i=1

bi, . . . , am

m∑
i=1

bi

)
.

We call linear codes over this ring simply as Sm-codes.
We will redefine the notion of duality of Sm-codes. More-
over, for an Sm-code C, we associate binary codes called
residue and ith torsion, for i = 1, 2, . . . ,m− 1. We then
study the structure of QSD codes of length n, defined
as self-orthogonal codes of size 2

mn
2 and Type IV codes,

defined as QSD codes with all codewords of even Ham-
ming weight, in terms of their residue and torsion codes.
The conditions for the existence of these codes will be
given.

2 PRELIMINARIES

2.1 THE RING Sm(F2)

In this section, we give some basic properties of the
ring Sm(F2).

Theorem 1. Let

Om(F2) = {(a1, a2, . . . , am) ∈ Sm(F2) |
m∑
i=1

ai = 0}.

Then Om(F2) is a commutative ideal of Sm(F2) and
Sm(F2)/Om(F2) ∼= F2.

The ideals of Sm(F2) can be characterized as follows.

Proposition 1. For positive integer m, Sm(F2) has
ideal Ji of size 2m−i for all i = 0, 1, . . . ,m and

Jm ⊆ Jm−1 ⊆ · · · ⊆ J1 ⊆ J0,

where Jm = {0}, Jm−1 = {0, cm−1}, J1 = Om(F2) and
J0 = Sm(F2).

As a consequence of the proof of Proposition 1, we
can write every element of Sm(F2) in a certain form.

Corollary 1. Let ci ∈ Ji \ Ji+1 for i = 0, 2, . . . ,m − 1
with J0 = Sm(F2). Then any element of Sm(F2) can be
written in the form

β0c0 + β1c1 + . . .+ βm−1cm−1,

where βi ∈ F2.

2.2 CODES OVER Sm(F2)

A (linear) Sm-code of length n is a one-sided Sm(F2)-
submodule of Sm(F2)n. Two Sm-codes are permuta-
tion equivalent if there is a permutation of coordinates
that maps one to the other.
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The number of nonzero coordinates of a vector x ∈
Sm(F2)n is called its (Hamming) weight denoted by
wt(x). The (Hamming) distance d(x,y) between two
vectors x,y ∈ Sm(F2)n is defined as d(x,y) = wt(x−y).
The minimum distance of an Sm-code C is

d(C) = min {d(x,y)|x,y ∈ C,x 6= y}
= min {wt(c) | c ∈ C, c 6= 0} .

We endow Sm(F2)n with the usual inner product

x · y =

n∑
i=1

xiyi

where x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Sm(F2)n.
Let C be an Sm-code. The right dual of C is the right
module defined as

C⊥R = {y ∈ Sm(F2)n | ∀x ∈ C,x · y = 0} ,

and the left dual of C is the left module defined as

C⊥L = {y ∈ Sm(F2)n | ∀x ∈ C,y · x = 0} .

The two-sided dual of C, denoted by C⊥ is defined
as C⊥ = C⊥R ∩ C⊥L . A code is left self-dual (resp.
right self-dual) if it is equal to its left dual, i.e., C⊥L = C
(resp. right dual, i.e., C⊥R = C). A code C is self-dual
if C = C⊥ and self-orthogonal if C ⊆ C⊥.

An Sm code C of length n is left nice (resp. right
nice) if |C|

∣∣C⊥L
∣∣ = 2mn (resp. |C|

∣∣C⊥R
∣∣ = 2mn).

Moreover, it is called quasi self-dual (QSD) if it is
self-orthogonal and of size 2

mn
2 . A quasi self-dual code

with all Hamming weights even is called a Type IV
code.

Define the map of reduction modulo Om(F2) as the
map α : Sm(F2) → F2 given by α((a1, a2, . . . , am)) =∑m

i=1 ai. This map can be extended naturally to a map
from Sm(F2)n to Fn

2 . For an Sm-code C, we associate
two binary codes:

1. the residue code defined by res(C) = {α(y) |y ∈
C}, and

2. the ith torsion code for i ∈ {1, 2, . . . ,m − 1}
defined by

tori(C) = {x ∈ Fn
2 | cix ∈ C},

where c0, c1, . . . , cm−1 are fixed such that c0 ∈ Sm(F2) \
Om(F2), ci ∈ Om(F2), i 6= 0.

Lemma 1. Let C be an Sm-code. Then every codeword
c ∈ C can be written as

c = c0x0 + c1x1 + . . .+ cm−1xm−1,

where x0 ∈ res(C) and xi ∈ Fn
2 . Moreover, res(C) ⊆

tori(C) for 1 ≤ i ≤ m− 2.

3 SELF-ORTHOGOGNAL ANDQSD Sm-
CODES

We start with a generalized construction of Sm-codes.

Theorem 2. Let Bi’s be linear codes over F2 such that
B0 ⊆ Bi ⊆ B⊥0 for 0 ≤ i ≤ m − 1, where B0 is self-
orthogonal binary code of length n, and |Bi| = 2ri such
that r0 + r1 + . . .+ rm−1 = mn

2 . The code C defined by

C = c0B0 + c1B1 + . . .+ cm−2Bm−2 + cm−1Bm−1,

is a quasi self-dual code. Its residue code is res(C) = B0

and torsion codes tori(C) = Bi.

Thus, we can write an Sm-code as a direct sum as
follows.

Corollary 2. If C is a linear code over Sm(F2), then

C = c0B0 ⊕ c1B1 ⊕ · · · ⊕ cm−1Bm−1,

where B0 = res(C) and Bi = tori(C) for i = 1, 2, . . . ,m−
1.

Note that we can choose the ri’s such that r0 ≤
ri−1 ≤ ri for all i = 1, 2, . . . ,m− 1.

Corollary 3. If Bi are binary codes for i = 0, 1, . . . ,m−
1 such that B0 ⊆ Bi for all i, then there exist an Sm-code
C with residue code B0 and tori(C) = Bi. Furthermore,
if B0 is self-orthogonal and Bi ⊆ B⊥0 for all i, then C
is self-orthogonal. Moreover, r0 + r1 + . . .+ rm−1 = mn

2
where |Bi| = 2ri for 0 ≤ i ≤ m − 1 then C is quasi
self-dual code.

The next result characterizes the residue and torsion
codes of self-orthogonal Sm-codes.

Lemma 2. For all self-orthogonal Sm-linear codes C
we have

1. res(C) ⊆ res(C)⊥;

2. tori(C) ⊆ res(C)⊥;

3. torm−1(C) = res(C)⊥ if C is QSD and the se-
quence r0, r1, r2, . . . , rm−1 is an arithmetic pro-
gression.

Corollary 4. Let C be an Sm-code of length n. Then
C is QSD if and only if tori(C) ⊆ res(C)⊥ for all i and
r0 + . . .+ rm−1 = mn

2 .

Theorem 3. Let C be an Sm-code of order n such that
C is QSD and m is even. If there exists l ∈ Z such that
the sequence rm

2
, . . . , rm−1 is the same sequence as r0 +

l, . . . , rm
2 −1 + l and rm

2 −1 + rm
2

= n, then torm−1(C) =

res(C)⊥.

We have an analog of Lemma 2 for QSD Sm-codes.

The 2nd International Conference on ICT Application Research
 August 31 - September 3, 2024
 Aomori, Japan

28



Theorem 4. For all quasi self-dual Sm-linear codes C
we have

1. res(C) ⊆ res(C)⊥;

2. torm−1(C) ⊆ res(C)⊥ (if m = 2, torm−1(C) =
res(C)⊥);

3. if C is of type {k0, . . . , km−1}, then

mk0 + (m− 1)k1 + . . .+ 2km−2 + km−1 =
mn

2
.

Moreover, if m ≥ 3, res(C) is self-dual if and only if C
is Type IV.

As a consequence, we have the following construction
of Type IV codes.

Corollary 5. If C = c0B+c1B+. . .+cm−1B, such that
B is binary self-dual code, then C is a Type IV code.

Finally, we end this section with the general notion
of duality of Sm-codes.

Theorem 5. If C is an Sm-code, then the following
hold.

1. res(C⊥L) = tori(C
⊥L) = res(C)⊥ for all i =

1, 2, . . . ,m− 1

2. res(C⊥R) =
⋂m−1

i=1 tori(C)⊥

3. tori(C
⊥R) = Fn

2 for all i = 1, 2, . . . ,m− 1

We illustrate all these results in the following exam-
ple.

Example 1. Let C = c0
(
0 0

)
+c1

(
1 1

)
+c2

(
1 0
0 1

)
.

Note that |C| = 23 and res(C) ⊆ tori(C) ⊆ res(C)⊥ for
i = 1, 2 which means C is quasi self-dual. Observe that

C⊥R = c0
(
0 0

)
+ c1

(
1 0
0 1

)
+ c2

(
1 0
0 1

)
since tor1(C)⊥ =

(
1 1

)⊥
=
(
1 1

)
and tor2(C)⊥ =(

1 0
0 1

)⊥
=
(
0 0

)
. Thus,

res(C⊥R) = tor1(C) ∩ tor2(C) =
(
0 0

)
and we have

C⊥L = c0

(
1 0
0 1

)
+ c1

(
1 0
0 1

)
+ c2

(
1 0
0 1

)
since res(C⊥L) = tori(C

⊥L) = res(C)⊥ =
(
0 0

)⊥
=(

1 0
0 1

)
. Therefore,

C⊥ = C⊥R∩C⊥L = c0
(
0 0

)
+c1

(
1 0
0 1

)
+c2

(
1 0
0 1

)
,

which means |C| ·
∣∣C⊥∣∣ = 23 · 24 = 27 6= 26 and hence,

C is not nice, that is, C is not self-dual.

3.1 CONCLUSION

The ring Sm(F2) is a relatively new ring, which may
generalize some known rings. More properties of this
ring needs to be explored, especially its application to
coding theory and other fields. Future work in codes
over this ring includes formulation of more examples for
longer length and larger finite fields or other rings in the
list of [?]. A complete classification of self-orthogonal,
self-dual and QSD Sn-codes for some n will also be valu-
able work in the future. This can be accomplished using
a mass formula, similar to what was done in other rings.
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Abstract 

 
The study compared various approaches to the teaching of science. The evaluation of performance 

incorporates teaching and learning concepts. A random selection yielded 82 students of comparable 

academic standing. Both the pre-test and post-test groups were given instruction that was activity-

based. The fact that the control group did better than the experimental group. It demonstrates that the 

conventional approach is the most effective way to instruct cellular respiration. Hence, the results of 

the traditional method were significantly better than those of the heuristic one. It has been shown to 

improve student achievement when taught in a conventional manner. Because males performed 

better than females, it can be concluded that gender and instructional methods in cellular respiration 

have no bearing on one another. The paper suggests that conventional approaches to education 

should be utilized in the classroom more frequently. This is especially the case if the method is able 

to pique the interest of male students. According to the result of the study, the advantage of heuristics 

is not restricted in any way because females perform well on heuristic achievement assessments. 
 

Keywords: conventional method, heuristic method, achievement scores, male, female, cellular respiration 
 

 

Introduction 

 

The instructional process affords students the chance 

to learn new concepts, skills, and procedures. Without 

instruction, you will not learn any knowledge. There is 

more to teaching than simply transmitting one's 

knowledge. It requires educating them on matters they 

are incorrectly aware of as well as those they are 

unaware of. Education in the sciences involves the 

systematic learning of knowledge, with a focus on 

quantitative study and empirical underpinnings. For 

the progress of innovation in higher education, the 

cultivation of inventive talent is crucial. Curriculum, 

teaching technique, teaching topic, and evaluation 

methods are all included in the term "teaching 

system." Heuristic education promotes creative 

thinking and allows students to improve their skills, 

which is advantageous for experimental education 

Heuristic Teaching Method on Innovative Talents 

Cultivation of Electrical Engineering (2013) and (Zhou 

2011). 

 
The scientific approach to education is referred to as 

heuristics. It accomplishes it in a way that encourages 

original ideas in s while maintaining educational 

standards. The application of heuristics in the 

classroom is advantageous for both students and 

instructors. A heuristic education seeks to actively 

engage students in educational activities while 

simultaneously fostering subjectivity, optimistic 

thinking, problem-solving skills, and a passion for 

learning. 

It is astounding how attentive the students are during 

lectures. Occasionally, heuristics are overlooked and it 

may convey the appearance that the students are 

uncertain about the answer, do not know the solution, 

or would know the answer but did not comprehend the 

elicitation. In order for heuristic teaching to have a 

refining effect, heuristic training participants must 

exert greater effort. Every student is expected to 

participate in both pre-learning activities and 

classroom participation. 

 

The success of the educational system depends on 

teachers. Based on their learning objectives, instructors 

of leadership employ active learning strategies. In 

addition to imparting knowledge from the textbook, 

they manage classroom order. Control, evaluation, 

organization, encouragement, participation, serving as 

a resource, tutoring, observation, execution, and 

assistance are all required of the modern educator. 

Teachers must possess a high level of self-control due 

to the fact that they assume a variety of roles 

throughout education. There are four actions that must 

be completed in order to implement the heuristic 

technique of instruction. 

 

The study compared several distinct approaches to 

science education. The core of the performance 

assessment system is teaching and learning 

philosophies. There were eighty students with the 

same amount of educational experience who were 

selected at random. The participants in the treatment 

group received standard activity-based training during 

both the pre-test and post-test stages of this 

investigation. The fact that the performance of the 
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treatment group exceeded that of the control group 

suggests that the heuristic approach is the most 

effective method for teaching cellular respiration. 

 

Research Questions 

 
1. What impact does the heuristic teaching 

approach have on students' overall cellular 

respiration achievement scores? 

2. How do the students’ mean accomplishment 

scores for men and women differ as a result of 

the heuristic approach to education? 

3. What impact does the gender and approach 

relationship have on the average student 

accomplishment scores? 

 

Methodology 

 

A quasi-experimental research design was used in this 

research paper. A Pretest non-equivalent control group 

design, specifically. The study was divided into two 

parts using a straightforward random sample 

methodology. One section was randomly assigned to 

the treatment group, and the other was randomly 

assigned to the control group. The 25 items multiple- 

choice questionnaire was pilot tested on 16 students 

who were not research respondents’ with a .80 

reliability index. These items were chosen from the 

Krebs cycle, electron transport chain, and glycolysis 

subtopics. The instrument was put through the face 

and content validation using a conventional test 

procedure. The Kuder-Richardson method was used to 

assess the dependability of the accomplishment 

 

There were two educational programs were used in 

this study. The second technique is instructive, while 

the first is heuristic-based. The heuristic approach and 

the standard package are identical in terms of content, 

core educational goals, and evaluation methods. The 

researcher did not select treatment and control groups 

from the same school to ensure that the pupils in the 

two groups did not mix. This was done to lessen the 

possibility of a John Henry effect and to avoid 

mistakes brought on by interactions and idea-sharing 

between research participants from the two groups. 

Results 

 

Table 1. Comparing the heristic and conventional 

group on post-test score 

 

 

 

According to table 1, students who received instruction 

using the traditional method had a mean score of 

24.64, whereas those who received instruction using 

the heuristic method had a mean score of 24.20. This 

demonstrates that the heuristic strategy does not 

support student achievement as effectively as the 

traditional method does in fostering students’ 

achievement. 

 

Table 2. mean accomplishment scores for men and 

women differ as a result of the heuristic approach to 

education 

 

 

 

Table 2 shows the male and female students taught in 

the heuristic method with cellular respiration concepts 

earned a mean score of 2.00 and a standard deviation 

of.00. As a result, men and women fared equally well. 
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Table 3. gender and method relationship have on the 

average student accomplishment scores 

 
 

Although there is a significant correlation between 

teaching methods and gender (0.7), there is only a 

weak correlation between teaching methods and 

student performance on tests (Table 3). (0.29). It 

appears from this that there is no connection between 

gender, an achievement proven to be extreme, and the 

approach that is taken in the classroom. 

 

Table 4. students overall scores on cellular respiration 

and their gender and teaching method 

 

 

 

Table 4 displays the link between students' overall 

scores on cellular respiration and their gender and 

teaching method. The ANCOVA table for hypothesis 1 

indicates that the F-cal (1.18), at a significance level of 

0.05, is less than the critical value (.27). The decision 

rule is to reject the null hypothesis when the calculated 

value exceeds the critical value with a predetermined 

probability threshold. Given that the estimated value is 

less than the essential value, the null hypothesis must 

hold. Therefore, the researcher concludes that there is 

no statistically significant difference between the 

average test results of students who learnt about 

cellular respiration using the heuristic method and 

those who learned about it using the conventional way. 

 

Table 4 displays that the two-way interaction F-value 

is 1234.77, while the critical value for hypothesis 3 at 

the 95% confidence level is.00. Based on the decision 

rule, the researcher maintains the null hypothesis and 

concludes that there is a substantial difference and 

significant interaction between gender and teaching 

style in terms of how effectively students learn about 

cellular respiration. 

 

Table 5. gender relationship with students' average 

success scores 

 

 

 

Table 5 demonstrates that the value of F-cal (1.67), 

which was calculated using an alpha level of 0.05, is 

more than the critical value. The estimated number is 

greater than the critical value at the alpha level that 

was specified, which means that the null hypothesis is 

invalid. As a consequence of this, the researcher 

concludes that the null hypothesis should not be 

accepted and draws the conclusion that the mean 

achievement scores of male and female students who 

were taught cellular respiration using the heuristic 

method are statistically significantly different from one 

another. 

 

Discussion 

 

The results of this study indicated that students who 

were taught cellular respiration using the conventional 

way did better than those who were taught using the 

heuristic method. The conventional group's 

achievement results were attributable to the conceived 

science being clear and the concepts being connected. 

Thus, the results of this study contrasted those of 

Abonyi and Umeh (2014), who found that the heuristic 

approach is superior to the conventional way and that 

there is no interaction between genders and linear 

algebra student achievement. Not all new innovations 

in teaching and learning increase and attract student 

learning, inspire, minimize the abstract nature of the 

subject, and facilitate recollection of taught material, 

according to the findings of this study. 

 

Using the heuristic method, there was no statistically 

significant difference between the mean achievement 

scores of male and female students. The study's 

heuristic results indicated that there is a substantial 

relationship between the method and gender in terms 
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of male and female performance in cellular respiration 

learning. The conventional way indicates that 

promoting high success in boys is effective. The 

conventional method generally assumes that different 

learners with different characteristics learned in the 

direct teaching-learning process and that the 

instructional method maximizes the learning outcomes 

of an instructional method for males since the heuristic 

method could be effective for a group of male 

students. 

 

Conclusion 

 

The results of an examination examining the influence 

that using a heuristic approach has on the level of 

performance achieved by students studying cellular 

respiration. The findings demonstrated that the 

traditional approach was more successful than the 

heuristic one. As a result, it encourages student 

achievement. As a consequence of this, males 

performed much better than females when the standard 

method was utilized, and there is no evidence to 

suggest that there is a substantial link between 

teaching strategy and gender in cellular respiration. 

 

According to the findings of the study, the traditional 

method of teaching should be utilized more frequently 

in the classroom. This is particularly the case if the 

method can attract, excite, and hold the attention of 

male pupils. As a result of the research, it was 

determined that the application of heuristics was not 

restricted because females learned and did well on 

heuristic accomplishment assessments. 

References 

 

A b o n y i ,  &  U m e h .   ( 2 0 1 4 ) .  

https://www.researchgate.net/publication/260514467_Effects_of_He 

uristic_Method_of_Teaching_on_Students%27_Achievement_in_Al 

gebra. International Journal of Scientific & Engineering Research, 

5 ( 2 ) ,  I S S N   2 2 2 9 - 5 5 1 8 .  

h t tps : / /ww w.resea rchga te .ne t /publica t ion/260514467  

 
Heuristic Teaching Method on Innovative Talents Cultivation of 

Electrical Engineering (2013). International Conference on 

Education Technology and Management Science (ICETMS 2013). 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web 

& c d = & c a d = r j a & u a c t = 8 & v e d = 2 a h U K E w i 7 8 K C j u -  

b7AhX4mVYBHWAtCb4QFnoECAgQAQ&url=https%3A%2F%2 

Fieeexplore.ieee.org%2Fiel7%2F6526529%2F6543347%2F065435 

76.pdf&usg=AOvVaw2NtZnvx8rV1ht6vwxFM3FZ 

 

Ngozi, N. (2003) Enticing children for effective learning. A paper 

presented at the Education Faculty day Nnamdi Azikiwe University 

(NAU) AwkaNgozi, N. (2003) Enticing children for effective 

learning. A paper presented at the Education Faculty day Nnamdi 

Azikiwe University (NAU) Awka 

Zhou Guangli, “Grasp the opportunity to explore new ways of 

training talent”, China Higher Education, pp.28-30,Jan. 2011. 

 

Affiliations and Corresponding Information 
 

 

http://www.researchgate.net/publication/260514467_Effects_of_He
http://www.researchgate.net/publication/260514467
http://www.google.com/url?sa=t&rct=j&q&esrc=s&source=web


EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 3, 2020, 529-548
ISSN 1307-5543 – www.ejpam.com
Published by New York Business Global

More on Perfect Roman Domination in Graphs

Leonard Mijares Paleta1,∗, Ferdinand P. Jamil2

1 Department of Mathematics, College of Science and Mathematics, University of Southern
Mindanao, Kabacan 9407, North Cotabato, Philippines
2 Department of Mathematics and Statistics,College of Science and Mathematics.
Center for Graph Theory, Algebra and Analysis, Premier Research of Institute of Science
and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan
City, Philippines

Abstract. A perfect Roman dominating function on a graph G = (V (G), E(G)) is a function
f : V (G) → {0, 1, 2} for which each u ∈ V (G) with f(u) = 0 is adjacent to exactly one vertex
v ∈ V (G) with f(v) = 2. The weight of a perfect Roman dominating function f is the value
ωG(f) =

∑
v∈V (G) f(v). The perfect Roman domination number of G is the minimum weight of a

perfect Roman dominating function on G. In this paper, we study the perfect Roman domination
numbers of graphs under some binary operations.
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1. Introduction

Throughout this paper, all graphs considered are finite, simple and undirected. Let
G = (V (G), E(G) be a graph. The sets V (G) and E(G) are the vertex set and edge set,
respectively, of G. For S ⊆ V (G), |S| is the cardinality of S. In particular, |V (G)| is
called the order of G. For notation and terminology not given here, see [5].

Vertices u and v of G are neighbors if uv ∈ E(G). The open neighborhood of v refers
to the set NG(v) consisting of all neighbors of v. The closed neighborhood of v is the set
NG[v] = NG(v) ∪ {v}. The degree of v, denoted degG(v), refers to the value |NG(v)|, and
we define ∆(G) = max{degG(v) : v ∈ V (G)}. Vertex v is an endvertex if degG(v) = 1, and
End(G) is the set of all endvertices of G. Vertex v is an isolated vertex if degG(v) = 0. We
denote by Iso(G) the set of all isolated vertices of G. For S ⊆ V (G), NG(S) = ∪v∈SNG(v),
and NG[S] = S ∪NG(S).
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Let G and H be graphs with disjoint vertex sets. The disjoint union of G and H is the
graph G∪H with V (G∪H) = V (G)∪V (H) and E(G∪H) = E(G)∪E(H). The join of G
and H is the graph G+H with vertex set V (G)∪V (H) and edge set E(G)∪E(H)∪{uv :
u ∈ V (G), v ∈ V (H)}. The corona of G and H is the graph G ◦H obtained by taking one
copy of G and |V (G)| copies of H, and then joining the ith vertex of G to every vertex in
the ith copy of H. The edge corona of G and H is the graph G � H obtained by taking
one copy of G and |E(G)| copies of H and joining each of the end vertices u and v of
each edge uv of G to every vertex of the copy Huv of H. The composition G[H] of G
and H is the graph with V (G[H]) = V (G) × V (H) and (u, v)(u′, v′) ∈ E(G[H]) if and
only if either uu′ ∈ E(G) or u = u′ and vv′ ∈ E(H). The complementary prism, denoted
GG, is the graph formed from the disjoint union of G and its complement G by adding
a perfect matching between corresponding vertices of G and G. For the complementary
prism, V (GG) = V (G) ∪ V (G) and E(GG) = E(G) ∪E(G) ∪ {vv : v ∈ V (G)}, where v is
the vertex in G corresponding to v ∈ V (G) in the perfect matching.

A subset S ⊆ V (G) is a dominating set of G if NG[S] = V (G). The minimum
cardinality of a dominating set is the domination number of G, denoted by γ(G). For
more details and results on domination number, we refer to [4, 9–11, 13]. In particular,
if γ(G) = 1 and NG[v] = V (G), then v is said to be a dominating vertex of G. In this
case, Dom(G) denotes the set of all dominating vertices of G. Any dominating set of G
of cardinality γ(G) is called γ-set of G.

A dominating set S of G is a perfect dominating set if for every v ∈ V (G) \ S, there
exists exactly one u ∈ S for which uv ∈ E(G) [16]. The minimum cardinality of a perfect
dominating set is the perfect domination number of G, which is denoted by γP (G). Since
perfect dominating sets are dominating sets, γ(G) ≤ γP (G) for any graph G.

A Roman dominating function on G is a function f : V (G) → {0, 1, 2} satisfying the
condition that for each u ∈ V (G) for which f(u) = 0, there exists v ∈ V (G) such that
f(v) = 2 and uv ∈ E(G). The weight of f is the value ωG(f) =

∑
v∈V (G) f(v). The

Roman domination number of G, denoted by γR(G), is the minimum weight of a function
f on G. We refer to [2, 3, 7, 8, 12, 17, 18] for the history, introduction, importance and
for some of the recent developments of the study of Roman domination in graphs.

Customarily, we write f = (V0, V1, V2) for a Roman dominating function f on G, where
Vk = {v ∈ V (G) : f(v) = k}. With this convention, ωG(f) = |V1|+ 2|V2| and V1 ∪ V2 is a
dominating set of G. In [8], it is known that for any graph G, γ(G) ≤ γR(G) ≤ 2γ(G).

A perfect Roman dominating function (or PRD-function) on G is a Roman domination
function f = (V0, V1, V2) on G such that for each u ∈ V0 there exists exactly one v ∈ V2
for which uv ∈ E(G). In other words, a PRD-function on G is a colouring of the vertices
of G using colours 0, 1 and 2 such that each vertex coloured 0 is adjacent to exactly one
vertex coloured 2. The perfect Roman domination number of G, denoted by γPR(G), is the
minimum weight of a PRD-function on G. A PRD-function f with ωG(f) = γPR(G) is
called γPR -function of G.

The perfect Roman domination, a variation of the Roman domination, was introduced
and first investigated in 2018 by Henning et al. [15], particularly in trees. It is further
studied in [14] for regular graphs. More recent studies on the concept include [1, 19, 20].
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In this present paper, we continue the study of perfect Roman domination, specifically
on the join, corona, complementary prism, edge corona and composition of graphs.

The following bounds are established in the referred articles above.

Theorem 1.1. (i)[15] If T is a tree of order n ≥ 3, then γPR(T ) ≤ 4
5n;

(ii) [14] If G is a k-regular graph of order n with k ≥ 4, then γPR(G) ≤
(

k2+k+3
k2+3k+1

)
n;

(iii) [19] If G is a graph of order n, then γPR(G) ≤ n+ 1−∆(G).

(iv) [19] For paths Pn and cycles Cn on n ≥ 3 vertices, γPR(Pn) = γPR(Cn) = d2n3 e.

For convenience, we adapt the symbol PRD(G) to denote the set of all perfect Roman
dominating functions on the graph G.

2. Results

The following proposition plays an important role in proving the desired results.

Proposition 2.1. If f = (V0, V1, V2) is a γPR -function of G, then |NG(v) ∩ V2| 6= 1 for
each v ∈ V1.

Proof : Suppose that there exists v ∈ V1 for which |NG(v)∩V2| = 1. Consider, in particular,
the function f∗ = (V ∗0 , V

∗
1 , V

∗
2 ) given by f∗(v) = 0 and f∗(x) = f(x) for all x 6= v. We have

f∗ ∈ PRD(G) with V ∗0 = V0∪{v}, V ∗1 = V1\{v} and V ∗2 = V2. Thus, ωG(f∗) = γPR(G)−1,
a contradiction. �

Proposition 2.2. For a nontrivial connected graph G of order n,

max{2, γ(G)} ≤ γPR(G) ≤ min{n+ 1−∆(G), 2γP (G)}.

Proof : Since a perfect Roman domination is a Roman domination, γ(G) ≤ γPR(G). Let
f = (V0, V1, V2) be a γPR -function of G. If V0 = ∅, then γPR(G) = n ≥ 2. On the other
hand, if V0 6= ∅, then V2 6= ∅ so that γPR(G) ≥ 2|V2| ≥ 2.

By Theorem 1.1(iii), γPR(G) ≤ n + 1 −∆(G). Now, let S ⊆ V (G) be a γP -set of G.
Then f = (V0, V1, V2) ∈ PRD(G), where V0 = V (G) \ S, V1 = ∅ and V2 = S. Therefore,
γPR(G) ≤ 2|S| = 2γP (G). �

Observe that γPR(Ck) = 4 = k + 1−∆(Ck) < 2γP (Ck) for k = 5 and γPR(C3n) = 2n =
2γP (C3n) < (3n+ 1)−∆(C3n) for all n ≥ 2. Therefore, the upper bound of the inequality
in Proposition 2.2 is sharp and may be determined by exactly one of n + 1 −∆(G) and
2γP (G). The inequality, however, can also be strict. To see this, note that γPR(C7) = 5 <
min{(7 + 1)−∆(C7), 2γ

P (C7)}.

Corollary 2.3. Let G be a connected graph of order n ≥ 2. Then

(i) [19] γPR(G) = 2 if and only if γ(G) = 1.
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(ii) γPR(G) = n if and only if n = 2.

(iii) [19] γPR(G) = 3 if and only if ∆(G) = n− 2.

(iv) If G is the complete multipartite graph Kr1,r2,...,rm, where 2 ≤ r1 ≤ r2 ≤ . . . ≤ rm,
then

γPR(G) =

{
min{r1 + 1, 4}, if m = 2;

r1 + 1, if m ≥ 3.

Proof : Clearly, if γ(G) = 1, then γP (G) = 1 and the inequalities in Proposition 2.2 imply
that γPR(G) = 2. Now, suppose that γPR(G) = 2, and let f = (V0, V1, V2) be a γPR -function
of G. If V2 = ∅, then V (G) = V1 and γPR(G) = n = 2. Since G is connected, G = P2 and
γ(G) = 1. If V2 6= ∅, then V1 = ∅ and V2 = {v} with NG[v] = V (G). This means that
γ(G) = 1. This proves (i).

If n = 2, then G = P2 and γPR(G) = 2 = n. Conversely, suppose that n ≥ 3. Pick
v ∈ V (G) such that degG(v) = ∆(G) ≥ 2. Define on G

f(x) =


2, if x = v;

0, if x ∈ NG(v);

1, else.

Then f ∈ PRD(G) and ω(f) = n− (∆(G)− 1) < n, a contradiction. Thus, if γPR(G) = n,
then n = 2. We have proved (ii).

If ∆(G) = n − 2, then Proposition 2.2 implies that 2 ≤ γPR(G) ≤ 3. Since γ(G) ≥ 2,
γPR(G) = 3 by (i). Conversely, suppose that γPR(G) = 3. By (i), γ(G) ≥ 2 so that
∆(G) ≤ n − 2, and by (ii), n ≥ 4. Let f = (V0, V1, V2) be a γPR -function on G. If
V2 = ∅, then V1 = V (G) and γPR(G) = n ≥ 4, a contradiction. Thus, |V2| = |V1| = 1, say
V1 = {u} and V2 = {v}. This means that V (G)\{u, v} ⊆ V0. Further, by Proposition 2.1,
uv /∈ E(G). Accordingly, degG(v) = n− 2. Therefore, ∆(G) ≥ n− 2. This proves (iii).

Suppose that G is the complete multipartite graph described in (iv). Then ∆(G) =
n − r1. Suppose first that m = 2. Then γ(G) = γP (G) = 2. By Proposition 2.2,
γPR(G) ≤ min{r1 + 1, 4}. Also, by (i), γPR(G) ≥ 3. If r1 = 2, then γPR(G) = 3 = r1 + 1. On
the other hand, if r1 ≥ 3, then γPR(G) = 4 ≥ r1 + 1. Now, assume that m ≥ 3. By (ii),
γPR(G) < n. Let f = (V0, V1, V2) be a γPR -function on G. Then |V2| = 1, say V2 = {v}.
Since f is a γPR -function, v ∈ U , where U is the partite set of G with |U | = r1. More
precisely, f(v) = 2, f(x) = 1 for all x ∈ U \ {v} and f(x) = 0 for all x ∈ V (G) \ U . Thus,
γPR(G) = ωG(f) = r1 + 1. This proves (iv). �

Proposition 2.4. [19] Let G1, G2, . . ., Gk be the components of G. Then γPR(G) =∑k
j=1 γ

P
R(Gj).

Proposition 2.4 and Corollary 2.3(ii) yield the following corollary.
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Corollary 2.5. Let G be a graph of order n. Then γPR(G) = n if and only if G = ∪kj=1Gj,
where Gj ∈ {K1,K2} for all j = 1, 2, . . . , k.

Corollary 2.6. Let G be a graph of order n. Then γ(G) = γPR(G) if and only if G = Kn.

Proof : If G = Kn, then γ(G) = n and by Corollary 2.5, γPR(G) = n. Conversely, suppose
that γ(G) = γPR(G), and let f = (V0, V1, V2) be a γPR -function of G. Note that if V2 6= ∅,
then γ(G) ≤ |V1| + |V2| < γPR(G), a contradiction. Thus, V2 = V0 = ∅ and γPR(G) = n.
This means that γ(G) = n and, thus, G = Kn. �

2.1. On the join of graphs

By Corollary 2.3(i), γPR(G+Kn) = 2 for all graphs G and for all n ≥ 1.

The following theorem characterizes all PRD-functions on the join of nontrivial con-
nected graphs.

Theorem 2.7. Let G and H be any nontrivial connected graphs and f = (V0, V1, V2).
Then f ∈ PRD(G+H) if and only if one of the following holds:

(i) V2 ⊆ V (G) and one of the following holds:

(a) V0 ⊆ V (G), V (H) ⊆ V1 and (V0, V1 ∩ V (G), V2) ∈ PRD(G);

(b) V0 ∩ V (H) 6= ∅ and V2 = {v} for which V0 ∩ V (G) ⊆ NG(v).

(ii) V2 ⊆ V (H) and one of the following holds:

(a) V0 ⊆ V (H), V (G) ⊆ V1 and (V0, V1 ∩ V (H), V2) ∈ PRD(H);

(b) V0 ∩ V (G) 6= ∅ and V2 = {v} for which V0 ∩ V (H) ⊆ NH(v).

(iii) A1 = V2 ∩ V (G) 6= ∅ and A2 = V2 ∩ V (H) 6= ∅ and the following holds:

(a) If V0 ∩ V (G) 6= ∅, then |A2| = 1 and (V0 ∩ V (G)) ∩NG(A1) = ∅;

(b) If V0 ∩ V (H) 6= ∅, then |A1| = 1 and (V0 ∩ V (H)) ∩NH(A2) = ∅.

Proof : Assume that f is a perfect Roman dominating function on G + H. We consider
three cases:

Case 1: Suppose that V2 ⊆ V (G). If V0 ⊆ V (G), then V (H) ⊆ V1 and the restriction
f |V (G) = (V0, V1 ∩ V (G), V2) of f on G is a perfect dominating function on G. Suppose
that V0 ∩ V (H) 6= ∅. Then, |V2| = 1, say V2 = {v}. Necessarily, V0 ∩ V (G) ⊆ NG(v).

Case 2: Similarly, if V2 ⊆ V (H), then either (ii)(a) or (ii)(b) holds.

Case 3: Assume that V2 intersects both V (G) and V (H), and A1 = V2 ∩ V (G) and
A2 = V2∩V (H). Suppose that V0∩V (G) 6= ∅, and let v ∈ V0∩V (G). Since A2 ⊆ NG+H(v),
|A2| = 1 and v /∈ NG(A1). Since v is arbitrary, (iii)(a) holds. Similarly, (iii)(b) holds.

Conversely, suppose that (i)(a) holds for f , and let w ∈ V0. Then w ∈ V (G) and there
exists a unique u ∈ V2 for which uw ∈ E(G). Since V (H) ⊆ V1, u is unique in V (G+H) for
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which uw ∈ E(G+H). This means that f ∈ PRD(G+H). Suppose that (i)(b) holds for
f , and let w ∈ V0. Whether w ∈ V (G) or w ∈ V (H), v is a unique element in V2 for which
wv ∈ E(G + H). Thus, f ∈ PRD(G + H). Similarly, if (ii) holds, the same conclusion
is attained for f . Suppose now that (iii) holds for f . Let v ∈ V0. If v ∈ V (G), then by
condition (a), A2 = {u} for some u ∈ V (H) and NG+H(v) = {u}. Similarly, if v ∈ V (H),
then A1 = {u} for some u ∈ V (G) and NG+H(v) = {u}. Accordingly, f ∈ PRD(G+H).
�

We now use Theorem 2.7 to prove the following result which is also provided in [19].

Corollary 2.8. [19] Let Gand H be nontrivial connected graphs of orders m and n, re-
spectively. Then

γPR(G+H) = min{4 + δ(G) + δ(H),m+ 1−∆(G), n+ 1−∆(H)}.

Proof : Let α = min{4 + δ(G) + δ(H),m + 1 −∆(G), n + 1 −∆(H)}. Let v ∈ V (G) for
which degG(v) = ∆(G). Define f = (V0, V1, V2) on G+H by

f(x) =


2, if x = v;

0, if x ∈ V (H) ∪NG(v);

1, else.

Since f satisfies condition (i)(b) of Proposition 2.7, f = (V0, V1, V2) ∈ PRD(G+H) with
V2 = {v} and V1 = V (G) \NG[v]. Thus,

γPR(G+H) ≤ ωG+H(f) = |V (G) \NG[v]|+ 2

= m+ 1−∆(G).

Similarly, γPR(G+H) ≤ n+ 1−∆(H).

Now, pick u ∈ V (G) and v ∈ V (H) such that degG(u) = δ(G) and degH(v) = δ(H),
and define f = (V0, V1, V2) on G+H by

f(x) =


2, if x = u, v;

1, if x ∈ NG(u) ∪NH(v);

0, else.

Since f satisfies Proposition 2.7 (iii), f ∈ PRD(G + H). Since V2 = {u, v} and V1 =
NG(u) ∪NH(v),

γPR(G+H) ≤ ωG+H(f) = |NG(u) ∪NH(v)|+ 4

= 4 + δ(G) + δ(H).

All of the above show that γPR(G+H) ≤ α.

Now, let f = (V0, V1, V2) be a γPR -function of G + H. By Corollary 2.3(ii), since
m+ n ≥ 4, V2 6= ∅. Assume A1 = V2 ∩ V (G) 6= ∅. We consider two cases:
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Case 1: Suppose that A2 = V2 ∩ V (H) = ∅. If Proposition 2.7(i)(a) holds for f , then

ωG+H(f) ≥ n+ γPR(G) > n ≥ n+ 1−∆(H) ≥ α.

On the other hand, if Proposition 2.7(i)(b) holds for f , then

ωG+H(f) ≥ 2 + |V (G) \NG[v]| ≥ m+ 1−∆(G) ≥ α.

Case 2: Suppose that A2 = V2 ∩ V (H) 6= ∅. If |A1| ≥ 2 and |A2| ≥ 2, then V0 = ∅
and γPR(G + H) > m + n, which is impossible. Assume that |A2| = 1. We consider two
subcases. First, suppose that |A1| ≥ 2. Then V0∩V (H) = ∅, and since f is a γPR -function
of G + H, V (G) \NG[A1] ⊆ V0 (by Proposition 2.1) and NG(A1) \ A1 ⊆ V1. This means
that |V1| ≥ |V (H) \ V2|+ |NG(A1) \A1| so that

ωG+H(f) = (n− 1) + |NG(A1) \A1|+ 2|V2| ≥ n+ 5 > n+ 1−∆(H).

Finally, suppose that |A1| = 1. Let A1 = {u} and A2 = {v} for some u ∈ V (G) and
v ∈ V (H). By Proposition 2.1, f(x) = 0 for all x ∈ V (G+H) \ (NG[u] ∪NH [v]). Thus,

ωG+H(f) ≥ 2|A1 ∪A2|+ |NG(u) ∪NH(v)| ≥ 4 + δ(G) + δ(H) ≥ α.

All cases above imply that γPR(G+H) ≥ α. �

In particular, if m ≥ n, then

γPR(Pm + Pn) =

{
n− 1, if n ≤ 6;

6, if n ≥ 7.
and γPR(Cm + Pn) =

{
n− 1, if n ≤ 7;

7, if n ≥ 8.

2.2. On the corona of graphs

Let G and H be connected graphs. Adapting the notation used in [6], for each v ∈
V (G), Hv denotes that copy of H which is joined with v in G ◦H. In case H = {x}, we
write V (Hv) = {xv}. Then V (G+H) = ∪v∈V (G)V (Hv + v), where Hv + v = Hv + 〈v〉.

It is worth noting that K1 ◦H = H +K1 for any graph H.

Theorem 2.9. For nontrivial connected graphs G of order n,

γPR(G ◦K1) = min{ωG(f) + n− |V2| : f = (V0, V1, V2) ∈ PRD(G)}.

In particular, γPR(Kn ◦K1) = n+ 1.

Proof : Write H = {x}, and put α = min{ωG(f) + n− |V2| : f = (V0, V1, V2) ∈ PRD(G)}.
Let f = (V0, V1, V2) ∈ PRD(G). Define f∗ = (V ∗0 , V

∗
1 , V

∗
2 ) on G ◦K1 by

f∗(z) =


f(z), if z ∈ V (G);

1, if z = xv for some v ∈ V0 ∪ V1;
0, if z = xv for some v ∈ V2.
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Then f∗ ∈ PRD(G ◦K1) with V ∗0 = V0 ∪ {xv : v ∈ V2}, V ∗1 = V1 ∪ {xv : v ∈ V0 ∪ V1} and
V ∗2 = V2. Moreover,

ωG◦K1(f∗) = ωG(f) + n− |V2|.
Thus, γPR(G ◦K1) ≤ α.

Let f = (V0, V1, V2) be a γPR -function on G ◦ K1, and let A denote the set of all
u ∈ V0 ∩ V (G) for which uv /∈ E(G) for all v ∈ V2 ∩ V (G). Then for each u ∈ A,
V2 ∩NG◦K1(u) = {xu}. Define f∗ = (V ∗0 , V

∗
1 , V

∗
2 ) on G ◦K1 by

f∗(z) =


f(z), if z ∈ V (G) \A;

1, if z ∈ A ∪ {xu : u ∈ (V0 ∪ V1) ∩ V (G)};
0, if z ∈ {xv : v ∈ V2 ∩ V (G)}.

Then f∗ ∈ PRD(G ◦ K1) with V ∗0 = ((V0 ∩ V (G)) \A) ∪ {xu : u ∈ V2 ∩ V (G)}, V ∗1 =
A ∪ (V1 ∩ V (G)) ∪ {xu : u ∈ (V0 ∪ V1) ∩ V (G)} and V ∗2 = V2 ∩ V (G). Observe that
f(u) + f(xu) = 2 = f∗(u) + f∗(xu) for each u ∈ A, and f(u) + f(xu) ≥ f∗(u) + f∗(xu) for
each u ∈ V (G) \A. Thus,

ωG◦K1(f) =
∑
u∈A

(f(u) + f(xu)) +
∑

v∈V (G)\A

(f(u) + f(xu))

≥
∑
u∈A

(f∗(u) + f∗(xu)) +
∑

u∈V (G)\A

(f∗(u) + f∗(xu))

= ωG◦K1(f∗).

Since f is a γPR -function, ωG◦K1(f) = ωG◦K1(f∗). Moreover, for each u ∈ V ∗0 ∩ V (G),
u ∈ (V0 ∩ V (G))\A so that there exists a unique v ∈ V2∩V (G) = V ∗2 such that uv ∈ E(G).
This means that the restriction f∗|G of f∗ to G is a perfect Roman dominating function
on G. Thus,

γPR(G ◦K1) = ωG◦K1(f∗) = ωG(f∗|G) +
∑

v∈V (G)

f∗(xv)

= ωG(f∗|G) + | (V0 ∪ V1) ∩ V (G)|
= ωG(f∗|G) + n− |V ∗2 ∩ V (G)|
≥ α.

�

It follows from Theorem 2.9 that for all connected graphs G of order n ≥ 2,

γPR(G ◦K1) ≤ γPR(G) + n− λ,

where λ = max{|V2| : (V0, V1, V2) is a γPR -function on G}, and this bound is sharp. Verify
that equality is attained if G is a cycle Cn (n ≥ 3), a path Pn (n ≥ 2), or any graph with
γ(G) = 1.

Our desired result for more general graphs G and H will follow from the following
characterization.
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Theorem 2.10. Let G and H be nontrivial graphs with G connected, and f = (V0, V1, V2).
Then f ∈ PRD(G ◦H) if and only if the following holds:

(i) For all v ∈ V0 ∩ V (G) either

(a) V2∩NG(v) = ∅ and V2∩V (Hv) = {u} with u satisfying V0∩V (Hv) ⊆ NHv(u);
or

(b) |V2 ∩NG(v)| = 1 and V (Hv) ⊆ V1;

(ii) For all v ∈ V1∩V (G), the restriction f |Hv of f to Hv is a perfect Roman dominating
function on Hv;

(iii) For all v ∈ V2 ∩ V (G) for which V0 ∩ V (Hv) 6= ∅, V0 ∩NHv(V2 ∩ V (Hv)) = ∅.

Proof : Assume that f ∈ PRD(G ◦ H). Let v ∈ V0 ∩ V (G). Then there exists a unique
u ∈ V2 for which u ∈ NG◦H(v) = V (Hv)∪NG(v). If V2∩NG(v) = ∅, then V2∩V (Hv) = {u}
and V0 ∩ V (Hv) ⊆ NHv(u). Suppose that V2 ∩ NG(v) 6= ∅. Then |V2 ∩ NG(v)| = 1 and
V2 ∩V (Hv) = ∅. Moreover, if w ∈ V0 ∩V (Hv), then there exists a unique z ∈ V2 ∩V (Hv)
such that wz ∈ E(Hv). Since vz ∈ E(G ◦H), this is impossible. Thus, V (Hv) ⊆ V1. This
proves (i). Next, let v ∈ V1 ∩ V (G), and let w ∈ V0 ∩ V (Hv). Since f is a perfect Roman
dominating function, there exists unique u ∈ V2 for which uw ∈ E(G ◦H). Since v ∈ V1,
u ∈ V2 ∩V (Hv) and uw ∈ E(Hv). Thus, f |Hv is a perfect Roman dominating function on
Hv, and (ii) holds. Statement (iii) is clear.

Conversely, suppose that conditions (i), (ii) and (iii) hold for f , and let w ∈ V0. Then
w ∈ V (Hv+v) for some v ∈ V (G). If w = v, then by condition (i), V2∩(V (Hv) ∪NG(w)) =
{u} for some u ∈ V (G ◦ H). This means that V2 ∩ NG◦H(w) = {u}. Suppose that
w ∈ V (Hv). We consider three cases:

Case 1: Suppose that v ∈ V0. Since w ∈ V0 ∩ V (Hv), V (Hv) * V1. Thus, by condition
(i) there exists u ∈ V (Hv) for which V2 ∩ V (Hv) = {u} and V0 ∩ V (Hv) ⊆ NHv(u). This
means that V2 ∩NG◦H(w) = {u}.

Case 2: Suppose that v ∈ V1. By condition (ii), there exists a unique u ∈ V2 ∩ V (Hv)
such that uw ∈ E(Hv) ⊆ E(G ◦H). This implies that V2 ∩NG◦H(w) = {u}.

Case 3: Suppose that v ∈ V2. Since w ∈ V0 ∩ V (Hv), condition (iii) implies that
w /∈ NHv(V2 ∩ V (Hv). Thus, V2 ∩NG◦H(w) = {v}.

Therefore, f is a perfect Roman dominating function on V (G ◦H). �

Corollary 2.11. Let G and H be nontrivial graphs with G connected of order n. Then
γPR(G ◦H) = 2n.

Proof : By Theorem 2.7, the function f = (V0, V1, V2) defined by f(x) = 2 for all v ∈ V (G),
and f(x) = 0 else, is a perfect Roman dominating function onG◦H. Thus, γPR(G◦H) ≤ 2n.

Now, let f = (V0, V1, V2) be a γPR -function on V (G ◦ H). Let v ∈ V (G). Clearly,
if v ∈ V2, then

∑
x∈V (Hv+v) f(x) ≥ 2. If v ∈ V0, then by Proposition 2.10(i) and since
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|V (Hv| ≥ 2,
∑

x∈V (Hv+v) f(x) ≥ 2. Finally, if v ∈ V1, then by Proposition 2.10(ii),∑
x∈V (Hv+v) f(x) > 2. Therefore,

γPR(G ◦H) = ωG◦H(f) =
∑

v∈V (G)

 ∑
x∈V (Hv+v)

f(x)

 ≥ 2n.

�

2.3. On the complementary prisms

Let f = (V0, V1, V2) ∈ PRD(GG). Suppose that for the restriction f |G /∈ PRD(G).
Then there exists v ∈ V (G) such that v ∈ V0 and V2 ∩NGG(v) = {v}. Let u ∈ V0 ∩ V (G).
There exists w ∈ V (GG) such that V2 ∩ NGG(u) = {w}. If w = u, then uv /∈ E(G, and
consequently, uv ∈ E(G), a contradiction. Thus, w ∈ V2∩V (G). This proves the following
lemma.

Lemma 2.12. Let G be any graph. If f ∈ PRD(GG), then f |G ∈ PRD(G) or f |G ∈
PRD(G).

Proposition 2.13. Let G be a graph of order n. Then

(i) γ(GG) < γPR(GG);

(ii) γPR(GG) = 2 if and only if n = 1;

(iii) γPR(GG) = 3 if and only if G ∈ {K2,K2};

(iv) If γ(G) = 1, then γPR(GG) ≤ n + 1 and equality is attained if degG(v) ≤ 3 for all
v /∈ Dom(G) or G is the disjoint union of Kj ∈ {K1,K2}.

Proof : Since GG is connected, (i) follows from Corollary 2.6.

If n = 1, then GG = K2 and γPR(GG) = 2. Suppose that γPR(GG) = 2, and let f be a
γPR -function of GG. By Lemma 2.12, we may assume that f |G ∈ PRD(G). If ωG(f |G) = 1,
then n = 1. If ωG(f |G) = 2, then G = {v} with f(v) = f |G(v) = 2 and f(v) = 0.

If G ∈ {K2,K2}, then GG is isomorphic to P4. Thus, γPR(GG) = 3. Conversely,
suppose that γPR(GG) = 3. By Proposition 2.3(iii), ∆(GG) = 2n− 2. Let v ∈ V (GG) be
such that degGG(v) = 2n − 2. Without loss of generality, assume that v ∈ V (G). Since
NGG(v) ∩ V (G) = {v}, degG(v) = 2n− 3 ≤ n− 1. Necessarily, n ≤ 2. By (ii), n = 2 and
G = K2.

If γ(G) = 1, then by Proposition 2.2, γPR(GG) ≤ n+1. First, suppose that degG(v) ≤ 3
for all v /∈ Dom(G). Let f = (V0, V1, V2) be a γPR -function of GG. Since ωGG(f) ≤ n+ 1,
V2 6= ∅. We consider two cases:
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Case 1: Suppose that V2 ∩ V (G) = ∅. If V (G) ⊆ V1, then V (G) * V0 so that ωGG(f) ≥
n+ 1. Suppose that V (G) ∩ V0 6= ∅. Then

ωGG(f) =
∑

w∈V0∩V (G)

f(w) +
∑

w∈V1∩V (G)

(f(w) + f(w))

≥ n+ 1.

Case 2: Assume that V2 ∩ V (G) 6= ∅. We consider two subcases:

Subcase 2.1: Suppose that V2 contains a dominating vertex v of G. Since f is a
γPR -function, NG(v) ∪ {v} ⊆ V0. Let w ∈ V (G) \ {v}. Suppose that w ∈ V0. There exists
u ∈ V (G) such that NG(w) ∩ V2 = {u}. Since wv /∈ E(G), u 6= v. Thus, u ∈ V0 and
v, u ∈ NGG(u) ∩ V2, a contradiction. This means that f(w) ≥ 1. Therefore, ωGG(f) =
2 +

∑
w∈V (G)\{v} f(w) ≥ 2 + n− 1 = n+ 1.

Subcase 2.2: Suppose that V2 ∩Dom(G) = ∅. Choos v ∈ Dom(G). Put A = {w ∈
V (G) : f(w) = f(w) = 0}. If A = ∅, then f(w) + f(w) ≥ 1 for all w ∈ V (G) and since
V2 ∩ V (G) 6= ∅, we have ωGG(f) ≥ n + 1. Suppose that A 6= ∅. Here, we work on two
subcases:

Subcase 2.2.1: Suppose that v ∈ V0. If f(v) = 2, then V (G) ∩ V2 = ∅ and so
f(u) = 2 for each u ∈ V0 ∩ V (G). This implies that ωGG(f) ≥ n + 1. Suppose that
f(v) = 1. Then there exists u ∈ V (G) such that V2 ∩ V (G) = {u}. Moreover, for
each w ∈ A, wu ∈ E(G). Since degG(u) ≤ 3 and uv ∈ E(G), |A| ≤ 2. Suppose that
A = {w}. There exists a ∈ V (G) such that u 6= a and NG(w) ∩ V2 = {a}. Since
α = (f(u) + f(u)) + (f(w) + f(w)) + (f(a) + f(a)) ≥ 4,

ωGG(f) = α+
∑

x∈V (G)\{u,w,a}

(f(x) + f(x)) ≥ 4 + (n− 4) + 1 = n+ 1.

Now, suppose that A = {w, z}. There exist a, b ∈ V (G) such that a, b ∈ V2, wa, zb ∈ E(G)
and a, b ∈ NG(u). Thus, f(u) = f(a) = f(b) = 1 and whether a = b or a 6= b,

α = (f(u) + f(u)) + (f(w) + f(w)) + (f(z) + f(z)) + (f(a) + f(a)) +
(
f(b) + f(b)

)
≥ 6.

Thus,

ωGG(f) = α+
∑

x∈V (G)\{u,w,z,a,b}

(f(x) + f(x)) ≥ 6 + (n− 6) + 1 = n+ 1.

Subcase 2.2.2: Suppose that v, v ∈ V1. For each w ∈ A, there exist distinct vertices
u, z ∈ V (G) such that u, z ∈ V2, uw ∈ E(G) and wz ∈ E(G). Again, for each u ∈
V2 ∩ V (G), since degG(u) ≤ 3, there can only be at most two vertices a, b ∈ A for which
ua, ub ∈ E(G). Using similar arguments, if |A| ≤ 2, then ωGG(f) ≥ n + 1. To proceed,
we only have to consider the case where 3 ≤ |A| ≤ 4. Other cases follow inductively.



L. Paleta, F. Jamil / Eur. J. Pure Appl. Math, 13 (3) (2020), 529-548 540

Suppose that A = {x, y, w}. The only nontrivial scenario is the following: There exist
a, c ∈ V2 ∩ V (G) and b ∈ V (G) such that b ∈ V2, ac /∈ E(G), wc ∈ E(G), {x, y} ⊆ NG(a),
and {x, y, w} ⊆ NG(b). Since ab ∈ E(G), f(a) = 1. Thus,

ωGG(f) =
∑

u∈{a,x,y,b,w,c}

(f(u) + f(u)) +
∑

u∈V (G)\{a,b,c,x,y,w}

(f(u) + f(u))

≥ 7 + (n− 7) + 2

> n+ 1.

Finally, suppose that A = {x, y, z, w}. It is enough to consider only the following nontrivial
case: There exist a, c ∈ V2 ∩ V (G) and b ∈ V (G) such that b ∈ V2, ac /∈ E(G), {x, y} ⊆
NG(a), {w, z} ⊆ NG(c), and {x, y, z, w} ⊆ NG(b). Since ab, cb ∈ E(G), f(a) = f(c) = 1.
Hence,

ωGG(f) =
∑

u∈{a,b,c,x,y,w,z}

(f(u) + f(u)) +
∑

u∈V (G)\{a,b,c,x,y,w,z}

(f(u) + f(u))

≥ 8 + (n− 8) + 2

> n+ 1.

All of the above cases show that γPR(G) = ωGG(f) ≥ n+ 1.

Next, suppose that G is the union of Kj ∈ {K1,K2}, and let f = (V0, V1, V2) be a
γPR -function of GG. As shown previously, we may assume that V2 ∩ V (G) 6= ∅, and if V2
contains a dominating vertex of G, then ωGG(f) ≥ n + 1. Henceforth, we assume that
V2∩Dom(G) = ∅. Pick v ∈ Dom(G). Then v ∈ Iso(G). Note that for all x ∈ Iso(G), x /∈
A = {w ∈ V (G) : f(w) = f(w) = 0} so that (f(x) + f(x)) ≥ 1. Also, for all x, y ∈ V (G)
for which xy ∈ E(G), if x ∈ A, then y ∈ V2 and so (f(x) + f(x)) + (f(y) + f(y)) ≥ 2.
Thus, if v ∈ V0 and u ∈ V (G) such that V2 ∩ V (G) = {u}, then

ωGG(f) = (f(u) + f(u)) +
∑

x∈Iso(G)

(f(x) + f(x)) +

∑
xy∈E(G)

((f(x) + f(x)) + (f(y) + f(y)))

≥ n+ 1.

On the other hand, if v ∈ V1, then f(v) = 1 and

ωGG(f) = (f(v) + f(v)) +
∑

x∈Iso(G)\{v}

(f(x) + f(x)) +

∑
xy∈E(G)

((f(x) + f(x)) + (f(y) + f(y)))

≥ n+ 1.

Therefore, γPR(GG) ≥ n+ 1. �
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As shown by the graph G in Figure 1, strict inequality may be attained in Proposition
2.13(iv) if we remove the condition that degG(v) ≤ 3 for all nondominating vertices v of
G. For such G, γPR(GG) = 6 < |V (G)|+ 1.
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Figure 1: Graph G with γ(G) = 1 and γP
R (GG) < |V (G)|+ 1

Pick G = Kn. By Proposition 2.13(iv) and Corollary 2.5,

γPR(GG) = 1 + max{γPR(G), γPR(G)}.

Observe also that if v ∈ V (G), then f = (V (G) \ {v},∅, {v}) ∈ PRD(G) and γPR(GG) =
ωG(f) + n − |V2|. The following result shows that these two expressions serve as sharp
lower and upper bounds, respectively, of γPR(GG) for a general graph G.

Theorem 2.14. For any graph G,

1 + max{γPR(G), γPR(G)} ≤ γPR(GG) ≤ ρ,

where ρ = min{ωG(f) + n− |V2| : f = (V0, V1, V2) ∈ PRD(G) ∪ PRD(G)}.

Proof : WLOG assume that for some f = (V0, V1, V2) on G, ρ = ωG(f) + n− |V2|. Extend
f to GG by defining f(v) = 0 for all v ∈ V2 and f(v) = 1 for all v ∈ V (G) \ V2. Then the
extension f ∈ PRD(GG) and γPR(GG) ≤ ωG(f) + n− |V2|. Thus, γPR(GG) ≤ ρ.

In view of Proposition 2.13(iv), we assume that neither G nor G is a complete graph.
WLOG, assume that γPR(G) ≥ γPR(G). Let f = (V0, V1, V2) be a γPR -function on GG. If
V (G) ⊆ V0, then V2 = V (G) so that γPR(GG) = 2|V2| = |V (GG)|. Since GG is connected,
n = 1 by Corollary 2.5 and Corollary 2.3(ii). This is contradictory to our assumption.
Thus, V (G) ∩ (V1 ∪ V2) 6= ∅. If V2 ∩ V (G) = ∅, then g = (V0 ∩ V (G), V1 ∩ V (G), V2) ∈
PRD(G). Since V (G) ∩ V1 6= ∅,

γPR(GG) = ωGG(f) ≥ ωG(g) + 1 ≥ γPR(G) + 1.

Suppose that V2 ∩ V (G) 6= ∅, and let A = {v ∈ V0 : V2 ∩ NGG(v) = {v}}. Define
g = (V ∗0 , V

∗
1 , V

∗
2 ) on G by

g(x) =

{
f(x), if x ∈ V (G) \A;

1, if x ∈ A.
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Then g ∈ PRD(G) with V ∗0 = (V0 \A)∩V (G), V ∗1 = A∪(V1 ∩ V (G)) and V ∗2 = V2∩V (G).
Since {v : v ∈ A} ⊆ V2 ∩ V (G),

γPR(GG) = ωG(g) +
∑

x∈V (G)

f(x)− |A| ≥ ωG(g) + 1 ≥ γPR(G) + 1.

�

If G = C5, then G and G are isomorphic and GG is isomorphic to the Petersen graph.
Observe that γPR(GG) = 7, γPR(G) = γPR(G) = 4 and ρ = 8 so that

1 + max{γPR(G), γPR(G)} < γPR(GG) < ρ.

This shows that strict inequality can be attained at each side of the inequalities in Theorem
2.14.

2.4. On the edge corona of graphs

Given graphs G and H, we write Huv to denote that copy of H that is being joined
with the endvertices of the edge uv ∈ E(G) in the edge corona G �H. If H = {x}, then
we write V (Huv) = {xuv}.

For an f ∈ PRD(G), we write for each a, b ∈ {0, 1, 2},

Eab(f ;G) = {uv ∈ E(G) : (f(u) = a ∧ f(v) = b) ∨ (f(u) = b ∧ f(v) = a)},

where “∧“ and “∨“ denote “and“ and “or“, respectively.

Theorem 2.15. Let G be a nontrivial connected graph and H any graph of order n. Then

γPR(G �H) ≤ α,

where

α = min
g∈PRD(G)

(
ωG(g) + |E11(g;G)|γPR(H) + n (|E01(g;G)|+ |E22(g;G)|+ E00(g;G)|)

)
,

and this upper bound is sharp.

Proof : Let g ∈ PRD(G). If no confusion arises, we write Eab = Eab(g;G). Let h ∈
PRD(H). For each ab ∈ E(G), we define a copy hab of h on Hab. Define the function
f = (V0, V1, V2) on G �H by

f(x) =


g(x), if x ∈ V (G);

huv(x), if x ∈ V (Huv), where uv ∈ E11;

0, if x ∈ V (Huv), where uv ∈ E02 ∪ E12;

1, if x ∈ V (Huv),where uv ∈ E01 ∪ E00 ∪ E22.
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We claim that f ∈ PRD(G �H). First, note that f |G = g = (V0 ∩ V (G), V1 ∩ V (G), V2 ∩
V (G)). Let x ∈ V0. Suppose that x ∈ V (G). ThenNG�H(x) = NG(x)∪

(
∪u∈NG(x)V (Hux)

)
.

Since g ∈ PRD(G), |V2 ∩ NG(x)| = 1, say V2 ∩ NG(x) = {z}. Let u ∈ NG(x), and
let y ∈ V (Hxu). If u ∈ V0 ∪ V1, then y ∈ V1. On the other hand, if u ∈ V2, then
y ∈ V0. Thus, V2 ∩ V (Hux) = ∅. Since u is arbitrary, V2 ∩

(
∪u∈NG(x)V (Hux)

)
= ∅

and so V2 ∩ NG�H(x) = {z}. Suppose that x ∈ V (Huv) for some uv ∈ E(G). Then
NG�H(x) = {u, v} ∪ NHuv(x). Since f(x) = 0, uv /∈ E00 ∪ E22 ∪ E01. If uv ∈ E11,
then huv(x) = 0 and there exists exactly one y ∈ V (Huv) such that xy ∈ E(Huv) and
f(y) = huv(y) = 2. In this case, V2 ∩ NG�H(x) = V2 ∩ NHuv(x) = {y}. Suppose that
uv ∈ E02 ∪ E12. Since V (Huv) ⊆ V0, either V2 ∩NG�H(x) = {u} or V2 ∩NG�H(x) = {v}.
Accordingly, f ∈ PRD(G �H). Therefore,

γPR(G �H) ≤ ωG(g) + |E11|ωH(h) +
∑

x∈{V (Huv):uv∈E00∪E01∪E22}

f(x)

= ωG(g) + |E11|ωH(h) + n (|E01|+ |E22|+ E00|) .

Since h is arbitrary, the desired inequality holds.
Consider the graph G � P3 in Figure 2, where G is the caterpillar ca(2, 0, 2) with the

corresponding vertex labelling. The function g on V (G) given by g(x) = g(z) = 2, g(y) = 1
and g(x) = 0 else is in PRD(G). Since E00 = E01 = E22 = E00 = ∅, α ≤ ωG(g) = 5 so
that γPR(G �P3) ≤ 5. Now, note that {x, z} is the unique γ-set of G �P3. However, {x, z}
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Figure 2: The edge corona G � P3 with γP
R (G � P3) = 5

does not form the V1 ∪ V2 for any f = (V0, V1, V2) ∈ PRD(G �P3). Thus, γPR(G �P3) ≥ 5.
�

The value of α in Theorem 2.15 is not necessarily determined by a γPR -function on G.
Consider the two copies of the edge corona P5�C4 given in Figure 3 with the corresponding
assignment of colours to the vertices. Here, we write P5 = {x1, x2, x3, x4, x5}. Observe
that f = ({x1, x3, x4},∅, {x2, x5}) is a γPR -function on P5 (see right-hand side figure), while
g = ({x1, x5}, {x3}, {x2, x4}) ∈ PRD(P5) but not a γPR -function on P5 (see left-hand side
figure). Verify that γPR(P5 � C4) = 5 and is determined by the function g.

From Theorem 2.15 and as illustrated in the preceding example, the value of α in
Theorem 2.15 is determined by the functions g ∈ PRD(G) for which most of the sets
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Figure 3: The edge corona P5 � C4

E00(g;G), E22(g;G), E11(g;G) and E01(g;G) are empty. In view of such, the following
observation can be easily verified.

Corollary 2.16. Let H be any nontrivial graph of order m. then

(i) For the path Pn on n ≥ 2 vertices, γPR(Pn �H) = 3bn−22 c+ 2.

(ii) If m ≥ 3, then for the cycle Cn on n ≥ 3 vertices,

γPR(Cn �H) =

{
3k, if n = 2k;

3k + 1 + γPR(H), if n = 2k + 1.

(iii) If m ≥ 3, then for 2 ≤ n ≤ k, γPR(Kn,k �H) = 2n+ k.

Theorem 2.17. Let G be a nontrivial connected graph. Then

γPR(G �K1) = min
g∈PRD(G)

(ωG(G) + |E00(g;G)|+ |E01(g;G)|+ |E11(g;G)|+ |E22(g;G)|) .

Proof : Put

α = min{ωG(G) + |E00(g;G)|+ |E01(g;G)|+ |E11(g;G)|+ |E22(g;G)| : g ∈ PRD(G)}.

By Theorem 2.15, γPR(G �K1) ≤ α.

Let f = (V0, V1, V2) be a γPR -function on G �K1. Suppose that the restriction f |G of f
to G is not a perfect Roman dominating function on G. We will construct a γPR -function g
on G �K1 such that ωG�K1(g) = ωG�K1(f) and its restriction g|G to G is a perfect Roman
dominating function on G. There exists u ∈ V0 ∩ V (G) such that uv /∈ E(G) for all
v ∈ V2∩V (G). This means that there exists v ∈ NG(u) such that V2∩NG�K1(u) = {xuv}.

Case 1: Suppose that v /∈ V0. Define f1 = (V 1
0 , V

1
1 , V

1
2 ) on G�K1 by f1(u) = f1(xuv) = 1

and f1(x) = f(x) for all x ∈ V (G � K1) \ {u, xuv}. Then f1 ∈ PRD(G � K1) with
ωG�K1(f1) = ωG�K1(f).

Case 2: Suppose that v ∈ V0. If (NG(v) \ {u})∩ V0 = ∅, then take f1 = (V 1
0 , V

1
1 , V

1
2 ) on

G given by f1(v) = 2, f1(xuv) = 0 and f1(x) = f(x) for all x ∈ V (G�K1)\{v, xuv}. Then
f1 ∈ PRD(G�K1) and ωG�K1(f1) = ωG�K1(f). Suppose that B = (NG(v) \ {u})∩V0 6= ∅.
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Necessarily, xvw ∈ V1 for each w ∈ B. In this case, take the function f1 = (V 1
0 , V

1
1 , V

1
2 )

on G �K1 given by

f1(x) =


2, if x = v;

0, if x ∈ {xuv, xvw : w ∈ B};
1, if x ∈ B;

f(x), if x ∈ V (G �K1) \ (B ∪ {xvw : w ∈ B}) .

Then f1 ∈ PRD(G � K1) with V 1
0 = (V0 \ {v}) ∪ {xuv, xvw : w ∈ B},

V 1
1 = (V1 \ {xvw : w ∈ B}) ∪ B and V 1

2 = (V2 \ {xuv}) ∪ {v}. It is easy to verify that
f1 ∈ PRD(G �K1) and ωG�K1(f1) = ωG�K1(f).

If f1|G /∈ PRD(G), then we follow the same process and obtain f2 ∈ PRD(G�K1) with
ωG�K1(f2) = ωG�K1(f1) = ωG�K1(f). If necessary, we do a finitely many repetitions of the
process until we obtain a function g = fk ∈ PRD(G�K1) for which ωG�K1(g) = ωG�K1(f)
and g|G ∈ PRD(G). By the definition of α, γPR(G �K1) = ωG�K1(g) ≥ α. �

The value of γPR(G �K1) in Theorem 2.17 is determined by the functions g ∈ PRD(G)
for which the sets E22 and E11 are empty. With this observation, it can readily be verified
that for n ≥ 1 and m ≥ 3,

γPR(Pn �K1) = bn− 1

3
c+ γPR(Pn) and γPR(Cm �K1) = dn

3
e+ γPR(Cm).

2.5. On the composition of graphs

Given S ⊆ V (G[H]), we write SG = {x ∈ V (G) : (x, y) ∈ S for some y ∈ V (H)},
which is called the projection of G on G[H].

Proposition 2.18. Let G and H be connected graphs, G noncomplete and H of order n
with γ(H) = 1. Then

γPR(G[H]) ≤ α,
where α = min{(n− 1) (|V1|+ |V2 ∩NG(V2)|) + ωG(f) : f = (V0, V1, V2) ∈ PRD(G)}.

Proof : Let v ∈ V (H) for which NH [v] = V (H). Let f = (V0, V1, V2) ∈ PRD(G) such that
V2 6= ∅. Define g = (V ∗0 , V

∗
1 , V

∗
2 ) on G[H] by

g((x, y)) =


0, if (x ∈ V2 \NG(V2) ∧ y 6= v) ∨ (x ∈ V0) ;

1, if (x ∈ V2 ∩NG(V2) ∧ y 6= v) ∨ (x ∈ V1) ;

2, if x ∈ V2 and y = v.

with V ∗0 = ((V2 \NG(V2))× (V (H) \ {v})) ∪ (V0 × V (H)), V ∗2 = V2 × {v} and V ∗1 =
(V1 ∪ V (H)) ∪ ((V2 ∩NG(V2))× (V (H) \ {v})). Let (x, y) ∈ V ∗0 . If x ∈ V2, then x /∈
NG(V2) so that NG[H]((x, y)) ∩ V ∗2 = {(x, v)}. If x ∈ V0, then there exists u ∈ V2 such
that NG(x) ∩ V2 = {u}, which implies that NG[H]((x, y)) ∩ V ∗2 = {(u, v)}. Thus, g ∈
PRD(G[H]). Therefore, γPR(G[H]) ≤ |V ∗1 |+2|V ∗2 | = (n−1) (|V1|+ |V2 ∩NG(V2)|)+ωG(f).
Since f is arbitrary, the desired inequality is established. �
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Proposition 2.19. Let G be a nontrivial connected graph and p ≥ 2. Then

γPR(G[Kp]) = α,

where α = min{(n− 1) (|V1|+ |V2 ∩NG(V2)|) + ωG(f) : f = (V0, V1, V2) ∈ PRD(G)}.

Proof : Let f = (V0, V1, V2) be a γRP -function on V (G[H]). Then V2 6= ∅ and V0 6= ∅.
First, we claim that (V0)G ∩ (V1)G = ∅. Suppose not, and let (x, y) ∈ V1 be such that
(x, z) ∈ V0 for some z 6= y. There exists unique (u, v) ∈ V2 for which (x, z)(u, v) ∈
E(G[Kp]. If u = x, then since y 6= v, (x, y)(u, v) ∈ E(G[Kp]). Thus, whether u = x
or x 6= u, (x, y)(u, v) ∈ E(G[Kp]). By Proposition 2.1, there exists (a, b) ∈ V2 \ {(u, v)}
such that (x, y)(a, b) ∈ E(G[Kp]). Using the same argument, whether x = a or x 6= b,
(x, z)(a, b) ∈ E(G[Kp]). This is a contradiction since (x, z) ∈ V0.

Fix v ∈ V (Kp). Define A = {(x, v) : x ∈ (V0)G ∩ (V2)G}, B = {(x, y) ∈ V2 : x /∈ (V0)G}
and C = {(x, y) ∈ V2 : x ∈ (V0)G , y 6= v}. Put

V ∗0 = (V0 \A) ∪ C, V ∗1 = V1, and V ∗2 = A ∪B.

Then {V ∗0 , V ∗1 , V ∗2 } forms a partition of V (G[Kp]). Note here that, in particular, since
(V0)G ∩ (V1)G = ∅ and V1 ∩ V2 = ∅. Now, let (x, y) ∈ V ∗0 .

Case 1: Suppose that (x, y) ∈ V0 \A. There exists (u,w) ∈ V2 such that NG[Kp]((x, y))∩
V2 = {(u,w)}. If u /∈ (V0)G, then (u,w) ∈ B and NG[Kp]((x, y)) ∩ V ∗2 = {(u,w)}. On the
other hand, if u ∈ (V0)G, then (u, v) ∈ A and NG[Kp]((x, y)) ∩ V ∗2 = {(u, v)}.

Case 2: Suppose that (x, y) ∈ C and let z ∈ V (Kp) \ {y} for which (x, z) ∈ V0. Since
(x, y)(x, z) ∈ E(G[Kp]) and (x, y) ∈ V2, NG[Kp]((x, z)) ∩ V2 = {(x, y)}. This means that
(x,w) /∈ V2 for all w ∈ V (Kp)\{y} and (u,w) /∈ V2 for all u ∈ NG(x) and for all w ∈ V (Kp).
Thus, NG[Kp]((x, y)) ∩ V ∗2 = NG[Kp]((x, y)) ∩A = {(x, v)}.

Accordingly, the function g = (V ∗0 , V
∗
1 , V

∗
2 ) ∈ PRD(G[Kp]). Since V ∗1 = V1 and |V ∗2 | ≤

|V2|, ωG[Kp](f) ≥ ωG[Kp](g). Because f is a γPR -function of G[Kp], ωG[Kp](f) = ωG[Kp](g)

and g is a γPR -function of G[Kp].

Define the function h = (V h
0 , V

h
1 , V

h
2 ) on G by

h(x) =


2, if x ∈ (V ∗2 )G ;

1, if x ∈ (V ∗1 )G \ (V ∗2 )G ;

0, else.

Let x ∈ V h
0 . Then (x, y) ∈ V ∗0 for all y ∈ V (Kp). Pick y ∈ V (Kp). There exists a unique

(u, v) ∈ V ∗2 for which (x, y)(u, v) ∈ E(G[Kp]). It follows that u ∈ V h
2 and ux ∈ E(G).

Moreover, u is unique in this sense as (u, v) is for (x, y). Thus, h ∈ PRD(G).

Finally, let x, u ∈ V h
2 for which xu ∈ E(G). Let y, v ∈ V (Kp) such that (x, y), (u, v) ∈

V ∗2 . Since g is a γPR -function of G[Kp], (x, a), (u, b) ∈ V ∗1 for all a ∈ V (Kp)\{y} and for all
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b ∈ V (Kp) \ {v}. On the other hand, by the definition of h, for each x ∈ V h
1 , (x, y) ∈ V ∗1

for all y ∈ V (Kp). Thus, |V ∗1 | ≥ p|V h
1 |+ (p− 1)|V h

2 ∩NG(V h
2 )|. Therefore,

γPR(G[Kp]) = ωG[Kp](g) = |V ∗1 |+ 2|V ∗2 |
≥ p|V h

1 |+ (p− 1)|V h
2 ∩NG(V h

2 )|+ 2|V h
2 |

= (p− 1)
(
|V h

1 |+ |V h
2 ∩NG(V h

2 )|
)

+ ωG(h)

≥ α.

The desired equality is completed by Proposition 2.18 �

Equality in Proposition 2.18 is possible even if H is not complete. Consider the graph
G[P3] in Figure 4, with G being the caterpillar graph ca(0, 2, 0, 2, 0). Observe that α = 7.
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G[P3]

Figure 4: Graph G with γP
R (G[P3]) = 7

On the other hand, γPR(G[P3]) = 7, which is determined by (V0, V1, V2) ∈ PRD(G[P3]),
where V1 and V2 are the sets of all red and all black vertices, respectively, in G[P3] and
V0 = V (G[P3]) \ (V1 ∪ V2).
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Abstract

In this paper, we introduce and characterize the notion of µmnSp-

Open Sets, µmnSp-interior, and µmnSp-closure of a set in Bigeneralized

Topological Spaces.

1 Introduction

In 2002, Császár introduced the concept of generalized topology [5]. Several
counterparts of existing concepts in topology were defined including the µ-
semiopen sets and µ-preopen sets.

Benjamin and Rara [4] introduced and characterizes the concepts of µSp-
open sets, µSp-closed sets, µSp-interior and µSp-closure of a set in the gen-
eralized topological spaces. These concepts are generalized topology’s coun-
terpart of the Sp-open sets in [7].

Boonpok [3] introduced the concept of bigeneralized topological spaces.
In this paper, we introduce and characterize the notions of µmnSp-Open
Sets, µmnSp-interior, and µmnSp-closure of a set in Bigeneralized Topolog-
ical Spaces.

Key words and phrases: µmnSp-Open sets, µmnSp-interior, and
µmnSp-closure, Bigeneralized Topological Spaces
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2 Preliminaries

Let X be a nonempty set. A subset µ of P (X) is said to be a generalized
topology (briefly GT) on X if ∅ ∈ µ and the arbitrary union of elements of
µ belongs to µ. If µ is a GT on X , then the pair (X, µ) is called a generalized
topological space (briefly GT-space), and the elements of µ are called µ-open
sets. The complement of a µ-open set is called a µ-closed set.

Throughout this paper, the space (X, µ1, µ2) (or simply X) mean a bi-
generalized topological space (BGT-space) with no separation axioms unless
otherwise stated. Let A be a subset of a bigeneralized topological spaces.
The closure and the interior of A with respect to µm are denoted by cµm

(A)
and iµm

(A), respectively, with m = 1, 2.

In 2019, Fathima et. al [2] introduced the following definition:
Let (X, µ1, µ2) be a bigeneralized topological space. Let A be a subset of X .
Then A is said to µmn-semiopen if A ⊆ cµm

(iµn
(A)), where m,n = 1, 2 and

m 6= n. The complement of a µmn-semiopen set is called a µmn-semiclosed
set.

Moreover, in 2020, Rani et. al [1] introduced the notion of a µmn-preopen
set as follows:
Let (X, µ1, µ2) be a bigeneralized topological space. Let A be a subset of X .
Then A is said to µmn-preopen if A ⊆ iµm

(cµn
(A)), where m,n = 1, 2 and

m 6= n. The complement of a µmn-preopen set is called a µmn-preclosed set.

3 µmnSp-Open Sets in the Bigeneralized Topo-

logical spaces

In this section, we introduce the notion of µmnSp-Open Sets in the Bigener-
alized Topological spaces.

Definition 3.1. A subset A of a bigeneralized topological space X is called
µmnSp-open if A is µn-semiopen and for every x ∈ A, there exists a µm-
preclosed set Fx such that x ∈ Fx ⊆ A. The complement of a µmnSp-open
set is called a µmnSp-closed set.

Remark 3.2. Let (X, µm, µn) be a bigeneralized topological space. Then A

is a µmnSp-open set in X if and only if A is µn-semiopen and A =
⋃

x∈A

Fx,

where Fx is a µm-preclosed set.
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Remark 3.3. The concepts of µmSp-open set or µnSp-open set and the µmnSp-

open sets are independent notions.

Remark 3.4. The µ12Sp-open sets need not be µ21Sp-open. To see this, let

X = {a, b, c, d} with generalized topologies µ1 = {∅, {a, c}, {d}, {a, c, d}}
and µ2 = {∅, {a}, {b}, {a, b}}. Then {a, c, d} is a µ21Sp-open set but not

µ12Sp-open.

Theorem 3.5. Let (X, µm, µn) be a bigeneralized topological space. Then A
is a µmnSp-closed set in X if and only if A is µn-semiclosed and for every

x /∈ A, there exists a µm-preopen set Ux such that A ⊆ Ux.

Proof.
Let A be a µmnSp-closed set in X . Then X\A is µmnSp-open. By Definition
3.1, X\A is µn-semiopen and for every x ∈ X\A, there exists a µm-preclosed
set Fx such that x ∈ Fx ⊆ X\A. Hence A is µn-semiclosed and for every
x /∈ A, there exists a µm-preopen set X\Fx such that A ⊆ X\Fx. Take
Ux = X\Fx. Thus the necessity of the theorem follows. The sufficiency is
proved similarly. This completes the proof.

Definition 3.6. The union of all the µmnSp-open sets of a BGT-space X
contained inA ⊆ X is called the µmnSp-interior of A, denoted by µmnSpiµmn

(A).

Remark 3.7. For any subset A of a BGT-space X , µmnSpiµmn
(A) ⊆ A.

Definition 3.8. The intersection of all the µmnSp-closed sets of X contain-
ing A is called the µmnSp-closure of A, denoted by µmnSpcµmn

(A).

Remark 3.9. For any subset A of a BGT-space X , A ⊆ µmnSpcµmn
(A).

4 µmnSp-Interior and µmnSp-Closure of a Set

In this section, we present some results involving µmnSp-interior and µmnSp-
closure of a set in the BGT-space. First, consider the following remark:

Remark 4.1. Let (X, µm, µn) be a BGT-space and A ⊆ X . Then
(i) µmnSpcµmn

(A) = X\µmnSpiµmn
(X\A);

(ii) µmnSpiµmn
(A) = X\µmnSpcµmn

(X\A).
(iii) A is µmn-semiopen and µmn-preclosed if and only if A = cµm

(iµn
(A)).

(iv) If A = cµmn
(iµmn

(A)), then A is µmnSp-open.
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The converse of Remark 4.1 (iv) need not be true. Consider the same
BGT-space X in Remark 3.4. Observe that the set A = {a, b} is µmnSp-open
and cµmn

(iµmn
(A)) = {a, b, c} which means A 6= cµmn

(iµmn
(A)).

Lemma 4.2. Arbitrary union of µmn-semiopen sets is µmn-semiopen.

Proof.
Let {Mi : i ∈ I} be a collection of µmn-semiopen sets in a BGT-space X .
Then Mi ⊆ cµm

(iµn
(Mi)) for all i. Thus

⋃

i∈I

Mi ⊆
⋃

i∈I

cµm
(iµn

(Mi))

⊆ cµm

(

⋃

i∈I

iµn
(Mi)

)

⊆ cµm

(

iµn
(
⋃

i∈I

Mi)

)

.

Therefore,
⋃

i∈I

Mi is µmn-semiopen.

Theorem 4.3. The collection of all µmnSp-open sets in X forms a BGT on

X.

Proof.
Let C = {Mi : Mi is µSp-open, i ∈ I}. Clearly, ∅ is µmnSp-open. Since Mi

is µmnSp-open for all i ∈ I, Mi is µmn-semiopen for all i. By Lemma 4.2,
∪i∈IMi is µmn-semiopen. Let x ∈ ∪i∈IMi. Then x ∈ Mi for some i ∈ I. Since
Mi is µmnSp-open, there exists a µm-preclosed set Fi such that x ∈ Fi ⊆ Mi.
This implies that x ∈ Fi ⊆ ∪i∈IMi. Therefore, ∪i∈IMi is µmnSp-open. It
follows that C forms a BGT on X .

Corollary 4.4. The intersection of all µmnSp-closed sets is µmnSp-closed.

Proof.
Let Fi be µmnSp-closed sets for each i ∈ I. Then X\Fi is µmnSp-open for each
i. By Theorem 4.3, ∪i∈I(X\Fi) = X\(∩i∈IFi) is µmnSp-open. Therefore,
∩i∈IFi is a µmnSp-closed set.
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Abstract

In this paper, we introduce and investigate some gµSp-separation
axioms in generalized topological spaces. Using the concepts of gµSp-
open sets, the study defines and characterizes gµSp-R0, gµSp-R1, gµSp-
T0, gµSp-T1, gµSp-T2, gµSp-regular and gµSp-normal spaces.
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1 Introduction

In [1], the concept of µSp-sets and µSp-functions was introduced. The
objective of this paper is to introduce the concept of generalized µSp-sets and
investigate some of its properties. Furthermore, new separations axioms via
the generalized µSp-sets are defined and characterized. In particular, we will
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impose more conditions on a generalized topological space and determine the
invariance properties of the resulting generalized topological space (GT-space).

For a subset A of a GT-space X, µSpcµ(A), µSpiµ(A), and X\A denote the
µSp-closure of A, µSp-interior of A, and complement of A in X, respectively.

2 Preliminaries

Definition 2.1 [1] A subset A of a GT-space X is called µSp-open if A is
µ-semiopen and for every x ∈ A, there exists a µ-preclosed set Fx such that
x ∈ Fx ⊆ A. The complement of a µSp-open set is called a µSp-closed set. If
(X,µX) is a GT-space, the notation µXSp-open means a µSp-open set in X
with the generalized topology µX .

Remark 2.2 The collection of all µSp-open sets in X forms a GT-space.

We will now define a larger set compared to a µSp-open set. Some of its
properties are established.

Definition 2.3 A subset A of a GT-space X is called a generalized
µSp-closed set (briefly gµSp-closed) if µSpcµ(A) ⊆ U whenever U is µSp-open
with A ⊆ U . The complement of a gµSp-closed set is called gµSp-open.

Remark 2.4 Every µSp-closed set is gµSp-closed.

Remark 2.5 The collection of all gµSp-open sets in X does not always form
a GT on X.

Definition 2.6 The gµSp-closure of a subset A of a GT-space X, denoted by
gµSpcµ(A), is the intersection of all gµSp-closed sets containing A.

Remark 2.7 The gµSp-closure of a subset A of a GT-space X is not
necessarily gµSp-closed. Consider Let X = {a, b, c, d} with the generalized
topology µ = {∅, {a, c}, {d}, {a, c, d}}. Then µ-closed sets in X are X, {b, d},
{a, b, c}, and {b}. Thus {a, b, c} and {b, c, d} are gµSp-closed sets but their
intersection {b, c} is not gµSp-closed.

Definition 2.8 The union of all the µSp-open sets of a GT-space X
contained in A ⊆ X is called the µSp-interior of A, denoted by µSpiµ(A).
The intersection of all the µSp-closed sets of X containing A is called the
µSp-closure of A, denoted by µSpcµ(A).
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Definition 2.9 A function f : (X,µX) → (Y, µY ) is called an absolute gµSp-
continuous if for every gµY Sp-open subset U of Y , f−1(U) is gµXSp-open in
X.

Definition 2.10 A function f : (X,µX)→ (Y, µY ) is called an absolute gµSp-
open if the image f(A) is gµY Sp-open in Y for each gµXSp-open set A in
X.

3 gµSp-Separation Axioms

In this section, gµSp-open sets are used to define separation axioms and
some of their properties are established.

Definition 3.1 A GT-space X is called a

(i) gµSp-R0 if for each gµSp-open set G and x ∈ G, gµSpcµ({x}) ⊆ G.

(ii) gµSp-R1 if for every x, y ∈ X with gµSpcµ({x}) 6= gµSpcµ({y}), there
exist disjoint gµSp-open sets U and V such that gµSpcµ({x}) ⊆ U and
gµSpcµ({y}) ⊆ V .

(iii) gµSp-T0 space if for each pair of distinct points x, y ∈ X, there is either
a gµSp-open set containing x but not y or a gµSp-open set containing y
but not x.

(iv) gµSp-T1 space if for each pair of distinct points x, y ∈ X, there is a
gµSp-open set containing x but not y, and a gµSp-open set containing y
but not x.

(v) gµSp-Hausdorff or gµSp-T2 space if for each pair of distinct points
x, y ∈ X, there exists gµSp-open sets U and V such that x ∈ U, y ∈ V
and U ∩ V = ∅.

(vi) gµSp-regular space if for each µSp-closed subset F ⊆ X and each point
x /∈ F , there exist gµSp-open sets U and V such that x ∈ U , F ⊆ V and
U ∩ V = ∅.

(vii) gµSp-T3 space if it is both gµSp-T1 and gµSp-regular space.

(viii) gµSp-normal if for each pair of disjoint µSp-closed subsets F1 and F2,
there exist gµSp-open sets U and V such that F1 ⊆ U , F2 ⊆ V and
U ∩ V = ∅.

(ix) gµSp-T4 space if it is both gµSp-T1 and gµSp-normal space.
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The relationship of gµSp-R0 and gµSp-R1 spaces is given in the next theo-
rem.

Theorem 3.2 Every gµSp-R1 space X is gµSp-R0.

Proof : Suppose that X is a gµSp-R1 space. Let U be a gµSp-open set in X and
x ∈ U . Suppose that gµSpcµ({x}) 6⊆ U . Then there exists
y ∈ gµSpcµ({x}) such that y /∈ U . Since x /∈ X\U and X\U is gµSp-closed
containing y, x /∈ gµSpcµ({y}) and so gµSpcµ({x}) 6= gµSpcµ({y}). Since X
is gµSp-R1, there exists a gµSp-open set V such that gµSpcµ({y}) ⊆ V and
x /∈ V . Thus, x ∈ X\V , X\V is gµSp-closed and y /∈ X\V . This means
that y /∈ gµSpcµ({x}). This is a contradiction to y ∈ gµSpcµ({x}). Thus,
gµSpcµ({x}) ⊆ U . Therefore, X is gµSp-R0. �

Theorem 3.3 The following statements are equivalent for a GT-space X:
(i) X is a gµSp-R0 space.
(ii) x ∈ gµSpcµ({y}) if and only if y ∈ gµSpcµ({x}) for any two points x and
y in X.

Proof : (i) ⇒ (ii): Let x ∈ gµSpcµ({y}) and U be any gµSp-open set such that
y ∈ U . Since gµSpcµ({y}) ⊆ U , x ∈ U . Thus, y ∈ gµSpcµ({x}). Similarly, if
y ∈ gµSpcµ({x}), then x ∈ gµSpcµ({y}).
(ii) ⇒ (i): Let y ∈ gµSpcµ({x}). By assumption, x ∈ gµSpcµ({y}). This
implies that y ∈ V . Therefore, gµSpcµ({x}) ⊆ V . This proves that X is a
gµSp-R0 space. �

We will introduce the concept of gµSp-kernel of a set and use it to
characterize the notions of gµSp-R0 and gµSp-R1.

Definition 3.4 If X is a GT-space and A ⊆ X, then the gµSp-kernel of A,
denoted by gµSpKer(A), is defined to be the set

gµSpKer(A) = ∩{U ⊆ X : U is gµSp-open and A ⊆ U}.

The next result follows immediately from Definition 3.4.

Lemma 3.5 If X is a GT-space and x, y ∈ X, then y ∈ gµSpKer({x}) if and
only if x ∈ gµSpcµ({y}).

In Remark 2.5, the union of any collection of gµSp-open sets need not be
gµSp-open. In the following definition, a property is defined so that the union
of any collection of gµSp-open sets is also gµSp-open.
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Definition 3.6 We say that the family of all gµSp-open sets in a GT-space
X has the property ϑ if the union of any collection of gµSp-open sets in X is
also gµSp-open. Let gµSpO(X,µ) denote the collection of gµSp-open sets in a
GT-space (X,µ).

Theorem 3.7 Let X be a GT-space and A ⊆ X such that gµSpO(X) has the
property ϑ. Then gµSpKer(A) = {x ∈ X : gµSpcµ({x}) ∩ A 6= ∅}.

Proof : Let x ∈ gµSpKer(A) and suppose on the contrary that
gµSpcµ({x}) ∩ A = ∅. Then A ⊆ X\gµSpcµ({x}) and X\gµSpcµ({x}) is a
gµSp-open set by assumption. Now, since x /∈ X\gµSpcµ({x}) and
x ∈ gµSpKer(A), we obtain a contradiction.

On the other hand, let x ∈ X such that gµSpcµ({x}) ∩ A 6= ∅. Sup-
pose that x /∈ gµSpKer(A). Then there exists a gµSp-open set U such that
A ⊆ U and x /∈ U . This implies that for each a ∈ A, a /∈ gµSpcµ({x}). Thus,
gµSpcµ({x}) ∩ A = ∅, contrary to our assumption. �

Theorem 3.8 Let x, y be any two points in a GT-space X.
If gµSpcµ({x}) 6= gµSpcµ({y}), then gµSpKer({x}) 6= gµSpKer({y}).
Moreover, if gµSpO(X) has the property ϑ, then the converse holds.

Proof : Suppose that gµSpcµ({x}) 6= gµSpcµ({y}). Assume that
gµSpcµ({x}) 6⊆ gµSpcµ({y}). Then there exists a point z ∈ gµSpcµ({x})
and z /∈ gµSpcµ({y}). Thus, there exists a gµSp-open set U containing z
(and hence containing x) not y. Hence, y /∈ gµSpKer({x}). Since x ∈
gµSpKer({x}), x /∈ gµSpcµ({y}). By Lemma 3.5, y /∈ gµSpKer({x}). There-
fore, gµSpKer({x}) 6= gµSpKer({y}).

Conversely, suppose that gµSpKer({x}) 6= gµSpKer({y}). Then there ex-
ists z ∈ X such that z ∈ gµSpKer({x}) but z /∈ gµSpKer({y}). Since z ∈
gµSpKer({x}), by Theorem 3.7, {x} ∩ gµSpcµ({z}) 6= ∅. Hence,
x ∈ gµSpcµ({z}). Since z /∈ gµSpKer({y}), {y} ∩ gµSpcµ({z}) = ∅. Because
x ∈ gµSpcµ({z}) and gµSpcµ({z}) is gµSp-closed by assumption,
gµSpcµ({x}) ⊆ gµSpcµ({z}) and {y} ∩ gµSpcµ({z}) = ∅. Therefore,
gµSpcµ({x}) 6= gµSpcµ({y}). This completes the proof. �

A characterization of gµSp-R0 space is given in the next result.

Theorem 3.9 Let X be a GT-space. If gµSpO(X) has the property ϑ, then
the following statements are equivalent:
(i) X is a gµSp-R0 space.
(ii) For any x ∈ X, gµSpcµ({x}) ⊆ gµSpKer({x}).
(iii) For any gµSp-closed set F and a point x /∈ F , there exists a gµSp-open
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set U such that x /∈ U and F ⊆ U .
(iv) If F is a gµSp-closed set, then

F = ∩{U ⊆ X : U is gµSp-open and F ⊆ U}.

(v) If F is a gµSp-closed set such that x /∈ F , then gµSpcµ({x}) ∩ F = ∅.

Proof :
(i) ⇒ (ii): If y ∈ gµSpcµ({x}), then x ∈ gµSpcµ({y}) by Theorem 3.3. By
Lemma 3.5, y ∈ gµSpKer({x}). Thus, (ii) holds.
(ii) ⇒ (iii): Suppose that F is a gµSp-closed set and x ∈ X such that
x /∈ F . Then for y ∈ F , gµSpcµ({y}) ⊆ F . Thus, x /∈ gµSpcµ({y}) so that
y /∈ gµSpcµ({x}). Hence, there exists a gµSp-open set O with y ∈ O but x /∈ O
for every y ∈ F . Let U = ∪{O : O is gµSp-open such that y ∈ O, x /∈ O}. By
assumption, U is gµSp-open such that x /∈ U and F ⊆ U .
(iii) ⇒ (iv): Let F be any gµSp-closed set and W = ∩{U ∈ gµSpO(X) : F ⊆
U}. Then F ⊆ W . Let x /∈ F . Then by hypothesis, there exists U ∈ gµSpO(X)
such that x /∈ U and F ⊆ U . Hence, x /∈ W . It follows that W ⊆ F .
(iv) ⇒(v): Let F be a gµSp-closed set with x /∈ F . Then by (iv),
x /∈ ∩{U ∈ gµSpO(X) : F ⊆ U}. Thus, there exists a gµSp-open set H
such that x /∈ H and F ⊆ H. Then x ∈ X\H = M ⊆ X\F so that
gµSpcµ({x}) ⊆M ⊆ X\F . Hence, gµSpcµ({x}) ∩ F = ∅.
(v) ⇒ (i): Let U be a gµSp-open set such that x ∈ U . Then X\U is a
gµSp-closed set and x /∈ X\U . Hence, gµSpcµ({x}) ∩ X\U = ∅. Therefore,
gµSpcµ({x}) ⊆ U . Consequently, X is a gµSp-R0 space. �

Theorem 3.10 Suppose that gµSpO(X) has the property ϑ. A GT-space X
is gµSp-T0 if and only if the gµSp-closure of distinct points are distinct.

Proof : Let X be a gµSp-T0 space. Suppose that x, y ∈ X with x 6= y. Then
there exists a gµSp-open set U that contains x but not y. Then X\U is gµSp-
closed in X which contains y but not x. Since {y} ⊆ X\U ,
gµSpcµ({y}) ⊆ X\U and since x /∈ X\U , x /∈ gµSpcµ({y}). Hence,
gµSpcµ({x}) 6= gµSpcµ({y}).

Conversely, let x, y ∈ X such that x 6= y. By assumption,
gµSpcµ({x}) 6= gµSpcµ({y}). Then there exists at least one point d of X
such that d ∈ gµSpcµ({x}) and d /∈ gµSpcµ({y}). If x ∈ gµSpcµ({y}), then
{x} ⊆ gµSpcµ({y}). Hence, gµSpcµ{x} ⊆ gµSpcµ({y}). This is a contradiction
since d /∈ gµSpcµ({y}) but d ∈ gµSpcµ{x}. Thus, x /∈ gµSpcµ({y}). Hence,
X\gµSpcµ({y}) is a gµSp-open set containing x but not y. Therefore, X is
gµSp-T0 space. �

Theorem 3.11 Let X be a GT-space and x ∈ X such that gµSpO(X) has the
property ϑ. If {x} is a gµSp-open set for every x ∈ X, then X is a gµSp-T1
space.
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Proof : Suppose that for each x ∈ X, {x} is a gµSp-open set. If |X| = 1, then
the result follows. Let |X| > 1 and let x, y be distinct points of X. Then {y}
is a gµSp-open set and X\{y} = ∪x∈X\{y}{x} is a gµSp-open set containing x
but not y. Therefore, X is a gµSp-T1 space. �

Theorem 3.12 Let X be a GT-space. If every singleton of X is gµSp-closed,
then X is gµSp-T1.

Proof : Let {x} be gµSp-closed for every x ∈ X. Suppose that x, y ∈ X are
distinct. Then X\{x} is gµSp-open containing y but not x. Also, X\{y} is
gµSp-open containing x but not y. Therefore, X is gµSp-T1. �

Remark 3.13 The converse of Theorem 3.12 is not necessarily true.

The next result provides additional condition so that the converse of The-
orem 3.12 holds.

Theorem 3.14 Let X be a GT-space such that gµSpO(X) has the property
ϑ. If X is gµSp-T1, then every singleton subset of X is gµSp-closed.

Proof : Suppose that X is a gµSp-T1 space. Let x ∈ X and y ∈ X\{x}. Then
x 6= y. Since X is gµSp-T1, there exists a gµSp-open set Uy such that y ∈ Uy
and x /∈ Uy. Thus, for each y ∈ X\{x}, there exists a gµSp-open set Uy such
that y ∈ Uy ⊆ X\{x}. It follows that ∪{{y}|y 6= x} ⊆ ∪{Uy|y 6= x} ⊆ X\{x}.
Hence, X\{x} = ∪{Uy|y 6= x}. Since gµSpO(X) has the property ϑ, X\{x}
is gµSp-open. Therefore, {x} is gµSp-closed. �

The next corollary follows fro Theorem 3.12 and Theorem 3.14.

Corollary 3.15 Let X be a GT-space such that gµSpO(X) has the property
ϑ. Then X is gµSp-T1 if and only if every singleton subset of X is gµSp-closed.

It is well known that a topological space X is a T1-space if and only if
each finite subset of X is closed. Can “singleton” in Theorem 3.15 be replaced
by “finite subset”? Remark 3.13 shows that the answer to this question is
negative.

We will now characterize a gµSp-T1 space.

Theorem 3.16 Let X be a GT-space such that gµSpO(X) has the property
ϑ. The following statements are equivalent:
(i) X is a gµSp-T1 space.
(ii) Each subset of X is the intersection of all gµSp-open sets containing it.
(iii) The intersection of all gµSp-open sets containing the point x ∈ X is {x}.
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Proof :
(i) ⇒ (ii): Let X be a gµSp-T1 space and A ⊆ X. If y /∈ A, there exists a
set X\{y} such that A ⊆ X\{y}. By Theorem 3.14, X\{y} is gµSp-open for
every y. Thus, A = ∩{X\{y} : y ∈ X\A}.
(ii) ⇒ (iii): Let x ∈ X. Then {x} ⊆ X. By assumption,

∩{U ⊆ X : U is gµSp-open with x ∈ U} = {x}.

(iii) ⇒ (i): Suppose x, y ∈ X such that x 6= y. Let

Ux = ∩{U ⊆ X : U is gµSp-open with x ∈ U}

and

Uy = ∩{V ⊆ X : V is gµSp-open with y ∈ V }.

By (iii), Ux = {x} and Uy = {y}. Thus there exist gµSp-open sets Ux and Uy
with x ∈ Ux, y /∈ Ux, y ∈ Uy, and x /∈ Uy. Hence, X is a gµSp-T1 space. �

Remark 3.17 Every gµSp-T1 space is gµSp-T0, but the converse is not true.
The next theorem provides a condition for a gµSp-T0 space to be gµSp-T1.

Theorem 3.18 If a GT-space X is both gµSp-T0 and gµSp-R0, then X is a
gµSp-T1 space.

Proof : Let x, y ∈ X be any pair of distinct points. Since X is a gµSp-T0
space, there exists a gµSp-open set U such that x ∈ U and y /∈ U or there
exists a gµSp-open set V such that y ∈ V and x /∈ V . Since X is gµSp-R0,
gµSpcµ({x}) ⊆ U and y /∈ gµSpcµ({x}). Hence, y ∈ W = X\gµSpcµ({x}).
Since gµSpcµ({x}) is gµSp-closed, W is gµSp-open. Therefore, there exist
gµSp-open sets U and W containing x and y respectively such that y /∈ U and
x /∈ W . Therefore, X is a gµSp-T1 space. �

Remark 3.19 Every gµSp-T2 space is gµSp-T1, but the converse is not true.
The next theorem characterizes a gµSp-T2 space.

Theorem 3.20 Let X be a GT-space. The following statements are
equivalent:
(i) X is a gµSp-T2 space.
(ii) For a given x0 ∈ X and for any x ∈ X such that x 6= x0, there exists a
gµSp-open set U in X with xo ∈ U and x /∈ gµSpcµ(U).
(iii) For each x ∈ X,

∩{gµSpcµ(U) : U is gµSp -open in X with x ∈ X} = {x}.
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Proof :
(i)⇒ (ii): Let x0 ∈ X and consider x ∈ X such that x 6= x0. Since X is a gµSp-
T2 space, there exist disjoint gµSp-open sets U and V such that x0 ∈ U and
x ∈ V . Then X\V is gµSp-closed and gµSpcµ(U) ⊆ X\V . Since x /∈ X\V ,
x /∈ gµSpcµ(U).
(ii) ⇒ (iii): Let x ∈ X. Then for each y ∈ X such that y 6= x, there exists a
gµSp-open set U such that x ∈ U and y /∈ gµSpcµ(U). Thus,

∩{gµSpcµ(U) : U is gµSp -open in X with x ∈ X} = {x}.

(iii) ⇒ (i): Suppose that x, y ∈ X such that x 6= y. Let

Wx = ∩{gµSpcµ(U) : U is gµSp-open in X with x ∈ U}.

By (iii), Wx = {x}. Hence, y /∈ Wx. This implies that there exists gµSp-
open set U with x ∈ U and y /∈ gµSpcµ(U). Let V = X\gµSpcµ(U). Then
U∩V = ∅. Since gµSpcµ(U) is a gµSp-closed set, V is a gµSp-open and y ∈ V .
Therefore, X is a gµSp-T2 space. �

The next theorem establishes links between gµSp-T2 and gµSp-R1 spaces.

Theorem 3.21 Let X be a gµSp-T0 space such that gµSpO(X) has the prop-
erty ϑ. Then X is gµSp-T2 if and only if gµSp-R1.

Proof : Let x, y ∈ X such that x 6= y. By Theorem 3.10,
gµSpcµ({x}) 6= gµSpcµ({y}). Since X is gµSp-T2, there exist disjoint gµSp-
open sets U and V such that x ∈ U and y ∈ V . By Remark 3.19 and Theorem
3.15, gµSpcµ({x}) = {x} ⊆ U and gµSpcµ({y}) = {y} ⊆ V . Hence, X is
gµSp-R1.

Conversely, suppose that x, y ∈ X with x 6= y. Then by Theorem 3.10,
gµSpcµ({x}) 6= gµSpcµ({y}). Since X is gµSp-R1, there are disjoint gµSp-open
sets U and V such that x ∈ gµSpcµ({x}) ⊆ U and
y ∈ gµSpcµ({y}) ⊆ V . Therefore, X is gµSp-T2. �

The following theorem is a characterization of a gµSp-R1 space.

Theorem 3.22 Let X be a gµSp-R1 space. Then for any x, y ∈ X such that
gµSpcµ({x}) 6= gµSpcµ({y}), there exist gµSp-closed sets M and N such that
x ∈ M, y /∈ M, y ∈ N, x /∈ N and X = M ∪N . If in addition, gµSpO(X) has
the property ϑ, then the converse holds.

Proof : Suppose that x, y ∈ X such that gµSpcµ({x}) 6= gµSpcµ({y}). Since
X is a gµSp-R1 space, there exist disjoint gµSp-open sets U and V such that
x ∈ gµSpcµ({x}) ⊆ U and y ∈ gµSpcµ({y}) ⊆ V . Let M = X\U and
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N = X\V . Then M and N are gµSp-closed sets such that x /∈ M, y ∈ M,
x ∈ N, y /∈ N and X = M ∪N .

Conversely, let x, y ∈ X be distinct such that gµSpcµ({x}) 6= gµSpcµ({y}).
By assumption, there exist gµSp-closed sets M and N such that x ∈ M,
y /∈ M, y ∈ N, x /∈ N and X = M ∪ N . Let U = X\N and V = X\M .
Then U and V are gµSp-open sets such that x ∈ U, y ∈ V and U ∩ V = ∅.
Therefore, X is a gµSp-R1 by Theorem 3.21. �

4 gµSp-Regular and gµSp-Normal Spaces

In this section, we investigate the concepts of gµSp-regular and gµSp-normal
spaces and establish some of their characterization.

Lemma 4.1 Let (X,µ) be a GT-space and U, V are gµSp-open sets in X.
Then U ∩ V = ∅ if and only if gµSpcµ(U) ∩ V = ∅.

Proof : Suppose that U ∩ V = ∅. Then U ⊆ X\V and X\V is gµSp-closed.
Thus, gµSpcµ(U) ⊆ gµSpcµ(X\V ) = X\V . This means that gµSpcµ(U)∩V =
∅. The converse is clear. �

Theorem 4.2 Let X be a GT-space. If X is a gµSp-T4 space, then X is
gµSp-T3.

Proof : Suppose that X is a gµSp-T4 space. Let x ∈ X and F be a gµSp-closed
set such that x /∈ F . Since X is gµSp-T1, {x} is gµSp-closed by Theorem 3.15.
By normality of X, there exist gµSp-open sets U and V such that x ∈ U ,
F ⊆ V , and U ∩ V = ∅. Therefore, X is a gµSp-T3 space. �

Theorem 4.3 The following statements are equivalent for a GT-space X where
gµSpO(X) possesses the property ϑ.

(i) X is a gµSp-regular space.

(ii) For every x ∈ X and for every µSp-closed set F such that x /∈ F ,
there exist gµSp-open sets Ux and VF such that x ∈ Ux, F ⊆ VF and
gµSpcµ(Ux) ∩ VF = ∅.

(iii) For every x ∈ X and for every µSp-closed set F such that x /∈ F , there
exist gµSp-open sets Ux such that gµSpcµ(Ux) ∩ F = ∅.

(iv) For every x ∈ X and for every µSp-open set Ux containing x, there exists
a gµSp-open set Vx containing x such that x ∈ Vx ⊆ gµSpcµ(Vx) ⊆ Ux.

v.) For every gµSp-closed set F of X,
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F = ∩{gµSpcµ(U) : F ⊆ U and U is gµSp-open}.

Proof : (i) ⇒ (ii): This follows from Lemma 4.1.
(ii) ⇒ (iii): This is straightforward.
(iii) ⇒ (iv): Let x ∈ X and suppose that Ux is a µSp-open set with x ∈ Ux.
Then X\Ux is a µSp-closed set and x /∈ X\Ux. Thus, there exists a gµSp-
open set Vx with x ∈ Vx such that gµSpcµ(Vx) ∩ (X\Ux) = ∅. It follows that
gµSpcµ(Vx) ⊆ Ux. Hence, x ∈ Vx ⊆ gµSpcµ(Vx) ⊆ Ux.
(iv) ⇒ (v): Let F be a gµSp-closed subset of X. Then

F ⊆ ∩{gµSpcµ(U) : F ⊆ U and U is gµSp-open}.

Suppose that x /∈ F . Then x ∈ X\F and X\F is a gµSp-open set. By (iv),
there exists a gµSp-open set Ux with x ∈ Ux such that

x ∈ Ux ⊆ gµSpcµ(Ux) ⊆ X\F.

Let VF = X\gµSpcµ(Ux). Since gµSpO(X) has the property ϑ, gµSpcµ(Ux)
is a gµSp-closed set so that VF is gµSp-open. Moreover, F ⊆ VF . Since
VF ⊆ gµSpcµ(VF ) ⊆ X\Ux, x /∈ VF . This means that

x /∈ ∩{gµSpcµ(U) : F ⊆ U and U is gµSp-open}.

Hence, ∩{gµSpcµ(U) : F ⊆ U and U is gµSp-open} ⊆ {x}. Therefore,

F = ∩{gµSpcµ(U) : F ⊆ U and U is gµSp-open}.

(v) ⇒ (i): Let x /∈ F and suppose that F is a µSp-closed set. Then
x /∈ ∩{gµSpcµ(U) : F ⊆ U and U is gµSp-open}. Thus, there exists a gµSp-
open set U such that F ⊆ U and x /∈ gµSpcµ(U). Let Ux = X\gµSpcµ(U).
Then x ∈ Ux and Ux ∩ U = ∅. Therefore, X is a gµSp-regular space. �

Theorem 4.4 The following statements are equivalent for a GT-space X where
gµSpO(X) possesses the property ϑ.

(i) X is a gµSp-normal space.

(ii) For every µSp-closed sets F1 and F2 such that F1 ∩ F2 = ∅, there exist
gµSp-open sets U1 and U2 such that F1 ⊆ U1, F2 ⊆ U2 and
gµSpcµ(U1) ∩ U2 = ∅.

(iii) For every µSp-closed sets F1 and F2 such that F1 ∩ F2 = ∅, there exists
a gµSp-open set U such that F1 ⊆ U and gµSpcµ(U) ∩ F2 = ∅.

(iv) For every µSp-closed set F and a µSp-open set U such that F ⊆ U , then
there exists a gµSp-open set V such that F ⊆ V ⊆ gµSpcµ(V ) ⊆ U .
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Proof : (i)⇒(ii): This follows from Lemma 4.1.
(ii) ⇒ (iii): This is straightforward.
(iii)⇒ (iv): Let F be a µSp-closed set and U be a µSp-open set such that
F ⊆ U . Then F1 = X\U is a µSp-closed set such that F ∩ F1 = ∅. By (iii),
there exists a gµSp-open set V such that F ⊆ V and gµSpcµ(V ) ∩ F1 = ∅.
Hence, F ⊆ V ⊆ gµSpcµ(V ) ⊆ X\F1 = U .
(iv) ⇒ (i): Suppose that F1 and F2 are µSp-closed subsets of X such that
F1 ∩ F2 = ∅. Then, U2 = X\F2 is a gµSp-open set such that F1 ⊆ U2. Thus,
by (iv), there exists a gµSp-open set V such that F1 ⊆ V ⊆ gµSpcµ(V ) ⊆ U2.
Hence, F1 ⊆ V and F2 = X\U2 ⊆ X\gµSpcµ(V ), where X\gµSpcµ(V ) is a
gµSp-open set. Thus, there exist gµSp-open sets V and W = X\gµSpcµ(V )
such that F1 ⊆ V and F2 ⊆ W . Therefore, X is a gµSp-normal space. �

Theorem 4.5 The following statements are equivalent for a GT-space X where
gµSpO(X) possesses the property ϑ.

(i) X is a gµSp-T4 space.

(ii) For every µSp-closed sets F1 and F2 such that F1 ∩ F2 = ∅, there exist
gµSp-open sets U1 and U2 such that F1 ⊆ U1, F2 ⊆ U2 and
gµSpcµ(U1) ∩ U2 = ∅.

(iii) For every µSp-closed sets F1 and F2 such that F1 ∩F2 = ∅, there exists
a gµSp-open set U such that F1 ⊆ U and gµSpcµ(U) ∩ F2 = ∅.

(iv) For every µSp-closed set F and a µSp-open set U such that F ⊆ U , then
there exists a gµSp-open set V such that F ⊆ V ⊆ gµSpcµ(V ) ⊆ U .

Proof : The proof is similar to Theorem 4.4. �

We will now detemine under which type of functions previously defined do
some spaces are invariant.

Theorem 4.6 The property of being a gµSp-T1 space and gµSp-T2 space are
invariant under an absolute gµSp-open bijective functions.

Proof : Suppose that X is a gµSp-T1 space and Y be any space. Let
f : (X,µX) → (Y, µY ) be an absolute gµSp-open bijective function. Let
y1 and y2 be any two distinct points in Y . Since f is bijective, there ex-
ist distinct points x1 and x2 in X such that f(x1) = y1 and f(x2) = y2.
Since X is a gµSp-T1 space, there exist gµXSp-open sets U and V such that
x1 ∈ U, x2 /∈ U and x2 ∈ V, x1 /∈ V . Hence, y1 = f(x1) ∈ f(U),
y2 = f(x2) /∈ f(U) and y2 = f(x2) ∈ f(V ), y1 = f(x1) /∈ f(V ). Since f
is an absolute gµSp-open function, f(U) and f(V ) are gµY Sp-open sets in Y
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with y1 ∈ f(U), y2 /∈ f(U), y2 ∈ f(V ), y1 /∈ f(V ). Therefore, Y is a gµSp-T1
space. The second statement is proved similarly. �

We end this section by the following theorem.

Theorem 4.7 The property of being a gµSp-regular space and gµSp-normal
space are invariant under absolute gµSp-continuous and absolute gµSp-open
bijective functions.

Proof : Let f : (X,µX)→ (Y, µY ) be a bijective absolute gµSp-continuous and
absolute gµSp-open function. Suppose that X is a gµSp-regular space, y ∈ Y
and F be a µY Sp-closed subset of Y such that y /∈ F . Since f is a bijective
absolute gµSp-continuous, there exists x ∈ X such that f(x) = y and f−1(F )
is a µXSp-closed subset of X with x /∈ f−1(F ). Thus, there exist gµXSp-
open sets U and V such that x ∈ U , f−1(F ) ⊆ V and U ∩ V = ∅. Hence,
y = f(x) ∈ f(U), F ⊆ f(V ) and f(U) ∩ f(V ) = f(U ∩ V ) = f(∅) = ∅. Since
f is an absolute gµSp-open function, f(U) and f(V ) are gµY Sp-open sets in
Y . Therefore, Y is gµSp-regular. The second statement is proved similarly. �
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Abstract

In this paper, the concepts of µSp-open sets, µSp-interior and
µSp-closure of a set in the generalized topological spaces are introduced.
This also investigates related concepts such as µSp-continuous, µSp-open
and µSp-closed functions.
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1 Introduction

In 1963, Levine introduced the notion of semi-open sets [3] which is one
of the well-known notion of generalized open sets. Several types of generalized
open sets were introduced such as preopen sets [4] that was established by
Mashhour et.al in 1982. In 2007, the concept of Sp-open sets [5] in topological
spaces was introduced by Shareef in his M.Sc. Thesis.

In this paper, the concepts of µSp-open sets, µSp-interior and µSp-closure
of a set in the generalized topological spaces are introduced and characterized.
Also, the study of related functions such as µSp-continuous, µSp-open and
µSp-closed functions are considered.
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Throughout this paper, space (X,µ) (or simply X) always means a
generalized topological space (GT-space) on which no separation axioms are
assumed unless explicitly stated. For a subset A of a GT-space X, µSpcµ(A),
µSpiµ(A), and X\A denote the µSp-closure of A, µSp-interior of A, and com-
plement of A in X, respectively.

2 Preliminaries

Definition 2.1 [2] A generalized topology (briefly GT) on X is a subset µ of
the power set P(X) of X such that ∅ ∈ µ and every union of some elements
of µ belongs to µ. We say that µ is a strong GT [1] if X ∈ µ. The pair (X,µ)
is called a generalized topological space (briefly GT-space). From now on, X
will simply mean a GT-space if no confusion arises.

Definition 2.2 [1] A subset A of a GT-space X is called
(i) µ-semiopen if A ⊆ cµ(iµ(A)) ;
(ii) µ-preopen if A ⊆ iµ(cµ(A)) ;
The complement of µ-semiopen (respectively µ-preopen) set with respect to X
is called a µ-semiclosed (respectively µ-preclosed) set.

Remark 2.3 A subset A of a GT-space X is
i.) µ-semiclosed if iµ(cµ(A)) ⊆ A.
ii.) µ-preclosed if cµ(iµ(A)) ⊆ A.

Definition 2.4 A subset A of a GT-space X is called µSp-open if A is
µ-semiopen and for every x ∈ A, there exists a µ-preclosed set F such that
x ∈ F ⊆ A. The complement of a µSp-open set is called a µSp-closed set.

Remark 2.5 µ-open set and µSp-open set are independent to each other as
seen from the following example.

Example 2.6 Let X = {a, b, c, d} and µ = {∅, {a, c}, {d}, {a, c, d}}. The
µSp-open sets of X are ∅, X, {b, d}, {a, b, c}, and {b}.

Remark 2.7 i.) A subset A of a GT-space X is µSp-closed if and only if A
is µ-semiclosed and for every x /∈ A, there exists a µ-preopen set U such that
x /∈ U and A ⊆ U .
ii.) The collection of all µSp-open sets in X forms a strong GT but not always
a topology on X.
iii.) The arbitrary intersection of µSp-closed sets in X is µSp-closed.

Definition 2.8 The union of all the µSp-open sets of a GT-space X contained
in A is called the µSp-interior of A, denoted by µSpiµ(A).
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Definition 2.9 The intersection of all the µSp-closed sets of X containing A
is called the µSp-closure of A, denoted by µSpcµ(A).

Theorem 2.10 Let (X,µ) be a GT-space and A ⊆ X. Then the following
hold:
i.) µSpiµ(A) = X\(µSpcµ(X\A)).
ii.) µSpcµ(A) = X\µSpiµ(X\A).

Definition 2.11 Let (X,µX) and (Y, µY ) be GT-spaces. A function
f : (X,µX)→ (Y, µY ) is called
(i) µ-continuous if for every µY -open subset U of Y , f−1(U) is µX-open in X.
(ii) µSp-continuous if for every µY -open subset U of Y , f−1(U) is µXSp-open
in X.
(iii) µSp-regular strongly continuous (briefly µSprs-continuous) if the inverse
image of every µY Sp-open set in Y is µX-open in X.
(iv) µSp-open if the image f(A) is µY Sp-open in Y for each µX-open set A in
X.
(v) µSp-closed if the image f(A) is µY Sp-closed in Y for each µX-closed set A
in X.
(vi) µSp-irresolute if for every µY Sp-closed subset F of Y , f−1(F ) is a µXSp-
closed set in X.

3 µSp-interior and µSp-closure of a Set

Theorem 3.1 Let (X,µ) be a GT-space and A,B ⊆ X. Then

(a) A is µSp-open if and only if A = µSpiµ(A).

(b) If A ⊆ B, then µSpiµ(A) ⊆ µSpiµ(B).

(c) If A and B are both µSp-open, then A∩B is not necessarily a µSp-open
set.

Remark 3.2 The collection of all µSp-open sets in X does not necessarily
form a topological space.

To see this, consider X = {a, b, c, d} with µ = P(X). Then the µSp-open
sets in X are ∅, X, {a, c, d} and {b, c, d} but {a, c, d} ∩ {b, c, d} = {c, d} is not
µSp-open.

Remark 3.3 Let (X,µ) be a GT-space and A ⊆ X.
i.) If A is µ-open, then A is both µ-semiopen and µ-preopen.
ii.) If A is µ-closed, then A is both µ-semiclosed and µ-preclosed.
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Theorem 3.4 Let (X,µ) be a GT-space and A ⊆ X. If A is both µ-semiopen
and µ-preclosed, then A is µSp-open.

The converse of Theorem 3.4 is not true since in Example 2.6, ∅ is µSp-open
but it is not µ-preclosed.

Theorem 3.5 Let (X,µ) be a GT-space and A,B ⊆ X. Then

(a) x ∈ µSpcµ(A) if and only if for every µSp-open set O with x ∈ O,
O ∩ A 6= ∅.

(b) If A ⊆ B, then µSpcµ(A) ⊆ µSpcµ(B).

(c) µSpcµ(A) ⊆ µSpcµ(µSpcµ(A)).

(d) A is µSp-closed if and only if A = µSpcµ(A) = µSpcµ(µSpcµ(A)).

(e) µSpcµ(A) ∪ µSpcµ(B) ⊆ µSpcµ(A ∪B).

Theorem 3.6 Let (X,µ) be a GT-space. The intersection of all the µ-closed
subsets Ai of X is a µSp-open set.

Proof : Let {Ai : i ∈ I} be a collection of all µ-closed subsets of X. If ∩iAi = ∅,
then we are done. Assume that ∩iAi 6= ∅. Since A′is are µ-closed sets, ∩iAi is
µ-closed. We claim that iµ(∩iAi) = ∅. Indeed, if in contrary, iµ(∩iAi) 6= ∅,
then there exists a µ-open set B 6= ∅ such that B ⊆ ∩iAi. Thus, X\B is
µ-closed and since ∩iAi is the smallest µ-closed subset of X, ∩iAi ⊆ X\B.
This implies that B ⊆ X\B, a contradiction. This shows that iµ(∩iAi) = ∅.
Hence, cµ(iµ(∩iAi)) = cµ(∅) = ∩iAi so ∩iAi is µ-semiopen and µ-preclosed.
Therefore, ∩iAi is µSp-open. �

Theorem 3.7 Let X be a finite nonempty set and µx = P(X\{x}) where
x ∈ X. Then µx is a GT on X and every µx-closed set is a µxSp-open set.

Proof : Let x ∈ X and A be a µx-closed set. Then A ⊆ X with x ∈ A. By
Remark 3.3, A is a µx-preclosed set. We claim that A is µx-semiopen. If
A = {x}, then iµx(A) = ∅ and cµx(iµx(A)) = cµx(∅) = {x} = A. Hence, A is
µx-semiopen. Suppose that |A| > 1. Then there exists y ∈ A such that x 6= y.
Then y ∈ iµx(A). Thus, every µx-closed set F ⊇ iµx(A) contains y. Hence,
y ∈ cµx(iµx(A)). Therefore, A ⊆ cµx(iµx(A)). It follows that A is µx-semiopen.
By Theorem 3.4, A is a µxSp-open set. �
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4 µSp-continuous Functions

In this section, some properties of µSp-continuous functions are obtained.

Theorem 4.1 If f : (X,µX) → (Y, µY ) is µSp-continuous and
g : (Y, µY ) → (Z, µZ) is µ-continuous, then g ◦ f : (X,µX) → (Z, µZ) is
µSp-continuous.

Proof : Let U be µZ-open in Z. Then g−1(U) is µY -open since g is µ-continuous.
Thus, f−1(g−1(U)) = (g ◦ f)−1(U) is µXSp-open since f is µSp-continuous.
Therefore, g ◦ f is µSp-continuous. �

Remark 4.2 The composition of two µSp-continuous functions need not be
µSp-continuous.

To see this, let X = {a, b, c, d} with µX = {∅, {a, c}, {d}, {a, c, d}},
Y = {a, b} with µY = {∅, {a}}, and Z = {u, v, w} with µZ = {∅, {u}}.
Then µY Sp-open sets in Y are ∅, {a}, {b}, {a, b}; µXSp-open sets in X are
∅, X, {b, d}, {a, b, c}, {b}; µZSp-open sets in Z are ∅, Z, {v, w}. Define
f : X → Y by f(b) = a, f(a) = f(c) = f(d) = b. Then f is µSp-continuous.
Define g : Y → Z by g(b) = u, g(a) = v. Then g is also µSp-continuous. But
g ◦ f : X → Z and (g ◦ f)−1({u}) = f−1(g−1({u})) = f−1({b}) = {a, c, d} is
not a µXSp-open set in X.

Theorem 4.3 Let f : (X,µX) → (Y, µY ) be a bijective function. The
following statements are equivalent:
1. f is µSp-continuous.
2. For each x ∈ X, and each µY -open set V containing f(x), there exists a
µXSp-open set U containing x such that f(U) ⊆ V .
3. f−1(F ) is µXSp-closed in X for every µY -closed set F in Y .
4. f(µXSpcµX (A)) ⊆ cµY (f(A)) for every A ⊆ X.
5. µXSpcµX (f−1(B)) ⊆ f−1(cµY (B)) for every B ⊆ Y .
6. f−1(iµY (B)) ⊆ µXSpiµX (f−1(B)) for every B ⊆ Y .
7. iµY (f(A)) ⊆ f(µXSpiµX (A)) for every subset A of X.

Proof : (1) ⇒ (2): Let x ∈ X and let V be a µY -open set with f(x) ∈ V .
Since f is µSp-continuous, f−1(V ) is µXSp-open in X and x ∈ f−1(V ). Take
U = f−1(V ) so that f(U) = V with x ∈ U .
(2)⇒ (1): Let V be any µY -open set in Y and let x ∈ f−1(V ). Then f(x) ∈ V .
By (2), there exists a µXSp-open set Ux such that x ∈ Ux and f(Ux) ⊆ V . By

Remark 2.7 (ii),
⋃

x∈f−1(V )

Ux is a µXSp-open set in X. Hence,

f−1(V ) =
⋃

x∈f−1(V )

Ux is a µXSp-open set. Therefore, f is µSp-continuous.
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(1)⇔ (3): Let f be µSp-continuous and let F be any µY -closed set in Y . Then
Y \F is µY -open. Since f is µSp-continuous, f−1(Y \F ) is µXSp-open. Now,
f−1(Y \F ) = f−1(Y )\f−1(F ) = X\f−1(F ). Hence, f−1(F ) is µXSp-closed in
X. Conversely, let F be a µY -open set in Y . Then Y \F is µY -closed. By
assumption, f−1(Y \F ) is µXSp-closed in X. Since f−1(Y \F ) = X\f−1(F ),
f−1(F ) is µXSp-open. Therefore, f is µSp-continuous.
(3)⇒ (4): Let A be any subset of X. Then f(A) ⊆ cµY (f(A)) and cµY (f(A)) is
a µY -closed set in Y . By assumption, f−1(cµY (f(A))) is a µXSp-closed set in X.
Hence, µSpcµX (A) ⊆ f−1(cµY (f(A)). Therefore, f(µXSpcµX (A)) ⊆ cµY (f(A)).
(4) ⇒ (5): Let B ⊆ Y . Then f−1(B) is a subset of X. By (4),
f(µXSpcµX (f−1(B)) ⊆ cµY f(f−1(B)) ⊆ cµY (B). Thus,
µXSpcµX (f−1(B)) ⊆ f−1(cµY (B)).
(5)⇒ (6): Let B ⊆ Y . Applying (5) to Y \B, we have µXSpcµX (f−1(Y \B)) ⊆
f−1(cµY (Y \B)). It follows that f−1(iµY (B)) ⊆ µXSpiµX (f−1(B)).
(6) ⇒ (7): Let A be any subset of X. Then f(A) is in Y . By (6),
f−1(iµY (f(A))) ⊆ µXSpiµX (A). Therefore, iµY (f(A)) ⊆ f(µXSpiµX (A)).
(7) ⇒ (1): Let V be a µY -open subset of Y . Then f−1(V ) ⊆ X. By (7),
iµY (f(f−1(V ))) ⊆ f(µXSpiµX (f−1(V ))). Thus, iµY (V ) ⊆ f(µXSpiµX (f−1(V ))).
Since V is µY -open, V ⊆ f(µXSpiµX (f−1(V ))) so that
f−1(V ) ⊆ µXSpiµX (f−1(V )). Hence, µXSpiµX (f−1(V )) = f−1(V ) which is
µXSp-open. Therefore, f is µSp-continuous. The proof is complete. �

Theorem 4.4 f : X → Y is µSprs-continuous if and only if f−1(A) is
µ-closed for every µSp-closed set A in Y .

Proof : Let f be a µSprs-continuous function and A be a µY Sp-closed set in
Y . Then Y \A is µY Sp-open in Y . Thus, f−1(Y \A) is µX-open since f is
µSprs-continuous. But f−1(Y \A) = X\f−1(A). Hence, f−1(A) is µ-closed.

Conversely, let O be a µY Sp-open set in Y . Then Y \O is µY Sp-closed.
By assumption, f−1(Y \O) is µX-closed. Thus, f−1(Y \O) = X\f−1(O) is
µX-closed. Therefore, f−1(O) is µX-open implying that f is µSprs-continuous.
This proves the theorem. �

Theorem 4.5 Let f : (X,µX) → (Y, µY ) be a bijective function. The
following statements are equivalent:
1. f is µSprs-continuous.
2. For each x ∈ X, and each µY Sp-open set V containing f(x), there exists a
µX-open set U containing x such that f(U) ⊆ V .
3. f−1(F ) is µX-closed in X for every µY Sp-closed set F in Y .
4. f(cµX (A)) ⊆ µY SpcµY (f(A)) for every A ⊆ X.
5. cµX (f−1(B)) ⊆ f−1(µXSpcµX (B)) for every B ⊆ Y .
6. f−1(µY SpiµY (B)) ⊆ iµX (f−1(B)) for every B ⊆ Y .
7. µY SpiµY (f(A)) ⊆ f(iµX (A)) for every subset A of X.

Proof : The proof is analogous to Theorem 4.3. �
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5 µSp-open and µSp-closed Functions

This section includes some properties of µSp-open and µSp-closed functions.

Theorem 5.1 Let f : (X,µX) → (Y, µY ) be a bijective function. Then the
following statements are equivalent:

1. f is µSp-open.

2. f is µSp-closed.

3. f(iµX (A)) ⊆ µY SpiµY (f(A)) for every A ⊆ X.

4. For each subset W of Y and each µX-open set U containing f−1(W ),
there exists a µY Sp-open set V of Y such that W ⊆ V and f−1(V ) ⊆ U .

5. For every subset S of Y and for every µX-closed set F of X containing
f−1(S), there exists a µY Sp-closed set K of Y containing S such that
f−1(K) ⊆ F .

6. f−1(µY SpcµY (B)) ⊆ cµX (f−1(B)) for every subset B of Y .

7. µY SpcµY (f(A)) ⊆ f(cµX (A)) for every subset A of X.

Proof :
(1) ⇔ (2): Let f be µSp-open and D be µX-closed in X. Then X\D is µX-
open and f(X\D) is µY Sp-open. Since f is bijective, Y \f(D) = f(X\D) is
µY Sp-open. Thus, f(D) is µY Sp-closed.

Conversely, let f be µSp-closed and suppose that O is a µX-open set in X.
Then X\O is µX-closed and f(X\O) = Y \f(O) is µY Sp-closed. Therefore,
f(O) is µY Sp-open.
(1) ⇔ (3): Let A ⊆ X and suppose that f is µSp-open. Since iµX (A) is
µX-open and f is µSp-open, f(iµX (A)) is µY Sp-open. Also, iµX (A) ⊆ A implies
that f(iµX (A)) ⊆ f(A). Thus, f(iµX (A)) ⊆ µY SpiµY (f(A)) by definition of
µY SpiµY (f(A)).

Conversely, letO be a µX-open set inX. Then iµX (O) = O and f(iµX (O)) =
f(O) ⊆ µY SpiµY (f(O)) ⊆ f(O). Hence, µY SpiµY (f(O)) = f(O). Since
µY SpiµY (f(O)) is µY Sp-open, f(O) is µY Sp-open. Therefore, f is a µSp-open
function.
(2) ⇔ (7): Let A ⊆ X and suppose that f is µSp-closed. Since A ⊆ cµX (A),
f(A) ⊆ f(cµX (A)). Moreover, since cµX (A) is µX-closed in X, f(cµX (A)) is
µY Sp-closed. Therefore, µY SpcµY (f(A)) ⊆ f(cµX (A)).

Conversely, let O be µX-closed. Then cµX (O) = O and f(cµX (O)) = f(O).
Since f(O) ⊆ µY SpcµY (f(O)) ⊆ f(cµX (O)) = f(O), µY SpcµY (f(O)) = f(O).
Since µY SpcµY (f(O)) is µY Sp-closed, f(O) is µY Sp-closed. Therefore, f is a
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µSp-closed function.
(1) ⇔ (5): Suppose that f is µSp-open. Let S ⊆ Y and F be a µX-closed
subset of X such that f−1(S) ⊆ F . Now, X\F is a µX-open set in X. Since
f is µSp-open, f(X\F ) is µY Sp-open in Y . Then K = Y \f(X\F ) is a µY Sp-
closed set in Y . Since f−1(S) ⊆ F , X\F ⊆ X\f−1(S) = f−1(Y \S). Thus,
f(X\F ) ⊆ f(f−1(Y \S)) ⊆ Y \S. Hence Y \(Y \S) ⊆ Y \f(X\F ) implying
that S ⊆ K and f−1(K) = X\f−1(f(X\F )) ⊆ X\(X\F ) = F.

For the converse, let U be a µX-open set in X. Since X\U is µX-closed
and f−1(Y \f(U)) = X\(f−1(f(U))) ⊆ X\U , by assumption, there exists a
µY Sp-closed subset K of Y such that Y \f(U) ⊆ K and f−1(K) ⊆ X\U so
that U ⊆ X\f−1(K). Hence, Y \K ⊆ f(U) ⊆ f(X\f−1(K)) ⊆ Y \K. This
implies that f(U) = Y \K. Since Y \K is µY Sp-open, f(U) is µY Sp-open in Y .
Therefore, f is µSp-open.
(2)⇔ (4): Similar to (1)⇔ (5).
(1) ⇔ (6): Suppose that f : X → Y is a µSp-open function and let B be
any subset of Y . Since f−1(B) ⊆ cµX (f−1(B)) and cµX (f−1(B)) is µX-closed
in X, by (1)⇔ (5), there exists a µY Sp-closed set K of Y such that B ⊆ K and
f−1(K) ⊆ cµX (f−1(B)). Hence, µY SpcµY (B) ⊆ K. Therefore, f−1(µY SpcµY (B)) ⊆
f−1(K) ⊆ cµX (f−1(B)).

Conversely, let O be a µX-open set in X. Then X\O is µX-closed and
f−1(µY SpcµY (f(X\O))) ⊆ X\O. Also, X\O ⊆ f−1(µY SpcµY (f(X\O))) and
µY SpcµY (f(X\O)) = Y \f(O). Since µY SpcµY (f(X\O)) is µY Sp-closed, f(O)
is µY Sp-open. Therefore, f is a µSp-open function. �

Theorem 5.2 Let f : (X,µX) → (Y, µY ) and g : (Y, µY ) → (Z, µZ) be
mappings such that the composition g ◦ f : (X,µX) → (Z, µZ) is µSp-closed.
Then the following hold:

(a) If f is µ-continuous and surjective, then g is µSp-closed.

(b) If g is µSp-irresolute and injective, then f is µSp-closed.

(c) If g is µSprs-continuous and injective, then f is µ-closed.

Proof : (a) Let f be µ-continuous and surjective and let A be a µY -closed sub-
set of Y . Since f is µ-continuous, f−1(A) is µX-closed in X. Since g ◦ f
is µSp-closed, (g ◦ f)(f−1(A)) is µZSp-closed in Z. Since f is surjective,
(g ◦ f)(f−1(A)) = g(f(f−1(A))) = g(A) is also µZSp-closed. Therefore, g(A)
is a µZSp-closed set in Z and g is a µSp-closed function.
(b) Let A ⊆ X be a µX-closed set. Since g◦f is µSp-closed, (g◦f)(A) is µZSp-
closed in Z. Because g is µSp-irresolute and injective,
f(A) = g−1(g(f(A))) = g−1((g ◦ f)(A)) is µY Sp-closed in Y . Therefore, f
is µSp-closed.
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(c) Let D be a µX-closed set of X. Since g◦f is µSp-closed, (g◦f)(D) is µZSp-
closed in Z. Since g is µSprs-continuous and injective, f(D) = g−1((g ◦f)(D))
is µY -closed in Y . That is, f(D) is µY -closed in Y . Therefore, f is µ-closed.
This completes the proof. �

Theorem 5.3 Let f : (X,µX) → (Y, µY ) be a µ-closed map and
g : (Y, µY ) → (Z, µZ) a µSp-closed map, then the composition
g ◦ f : (X,µX)→ (Z, µZ) is µSp-closed.

Proof : Let F be any µX-closed set in X. Since f is µ-closed, f(F ) is µY -
closed in Y . Because g is µSp-closed, g(f(F )) is µZSp-closed in Z. Thus,
(g ◦ f)(F ) = g(f(F )) is µZSp-closed and hence g ◦ f is µSp-closed. �

Remark 5.4 Let f : (X,µX) → (Y, µY ) be a µSp-closed function and
g : (Y, µY ) → (Z, µZ) a µ-closed function. Then the composition g ◦ f :
(X,µX)→ (Z, µZ) need not be µSp-closed.

Theorem 5.5 For a bijection map f : (X,µX) → (Y, µY ), the following are
equivalent:

(a) f−1 : Y → X is µSp-continuous.

(b) f is µSp-open.

(c) f is µSp-closed.

Proof : (a)⇒(b): Let U be a µX-open set of X. By hypothesis,
(f−1)−1(U) = f(U) is µY Sp-open in Y so that f is µSp-open.
(b)⇒(c): Let F be a µX-closed set of X. Then X\F is µX-open in X. By
assumption, f(X\F ) is µY Sp-open in Y . Since f is bijective, Y \f(F ) =
f(X\F ) is µY Sp-open in Y . Hence, f(F ) is µY Sp-closed in Y . Therefore,
f is µSp-closed.
(c)⇒(a): Let F be a µX-closed set of X. By (c), f(F ) is µY Sp-closed in Y .
But f(F ) = (f−1)−1(F ). Thus, f−1 is µSp-continuous. �
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Abstract

In this paper, the concept of regular w-closed (rw-closed) sets in
topological spaces introduced in [1] is further studied. It also investi-
gates related concepts such as rw-interior and rw-closure of a set, and
rw-continuous.

Mathematics Subject Classification: 54A05

Keywords: regular open sets, rw-sets, rw-functions

1 Introduction

In 1937, Stone [6] introduced and investigated the regular open sets. These
sets are contained in the family of open sets since a set is regular open if it is
equal to the interior of its closure. In 1978, Cameron [2] also introduced and
investigated the concept of a regular semiopen set. A set A is regular semiopen
if there is a regular open set U such that U ⊆ A ⊆ U . In 2007, a new class of
sets called regular w-closed sets (rw-closed sets) was introduced by Benchalli
and Wali [1]. A set B is rw-closed if B ⊆ U whenever B ⊆ U for any regular
semiopen set U . They proved that this new class of sets is properly placed

1This research is funded by the Department of Science and Technology-Philippine Council
for Advanced Science and Technology Research and Development (DOST-PCASTRD).
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in between the class of w-closed sets [5] and the class of regular generalized
closed sets [4].

In this paper, the concepts of rw-closed and rw-open sets (complement of
rw-closed set) are further investigated. Also, the study of related functions
involving rw-closed and rw-open sets are characterized.

Throughout this paper, space (X, T) (or simply X) always means a topolog-
ical space on which no separation axioms are assumed unless explicitly stated.
For a subset A of a space X, A, int(A), and C(A) denote the closure of A,
interior of A, and complement of A in X, respectively.

2 Preliminaries

Definition 2.1 [1] A subset A of a space X is called
(i) regular open if int(A) = A and it is regular closed if int(A) = A.
(ii) regular semiopen if there exists a regular open set U such that
U ⊆ A ⊆ U .
(iii) regular w-closed set (briefly, rw-closed) if A ⊆ U whenever A ⊆ U and
U is regular semiopen in X. The complement of any rw-closed set is called
rw-open set.

Definition 2.2 [3] The intersection of all the rw-closed sets of X containing
A is called the rw-closure of A, denoted by rw-(A).

Definition 2.3 [3] The union of all the rw-open sets of a space X contained
in A is called the rw-interior of A, denoted by rw-int(A).

Definition 2.4 [1] A function f : X → Y is called
(i) rw-open if the image f(A) is rw-open in Y for each open set A in X.
(ii) rw-closed if the image f(A) is rw-closed for each closed set A in X.
(iii) rw-continuous if for every open subset U of Y , f−1(U) is rw-open in X.

Theorem 2.5 [1] Every closed set is rw-closed.

3 rw-interior and rw-closure of a Set

Theorem 3.1 Let (X, T) be a topological space and A, B ⊆ X. Then

(a) If A is open, then A is rw-open.

(b) If A is rw-open, then A = rw-int(A).
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(c) int(A) ⊆ rw-int(A).

(d) If A ⊆ B, then rw-int(A) ⊆ rw-int(B).

(e) If A and B are both rw-open, then A ∩ B is rw-open.

Remark 3.2 The converses of Theorem 3.1 (a) and (b) are not true.

Remark 3.3 Let (X, T) be a topological space and A, B ⊆ X. If A and B
are both rw-open, then A∪B need not be rw-open. Thus, the family of all the
rw-open subsets of X is not a topology in X.

Theorem 3.4 A is rw-open in X if and only if for every regular semiopen
set U in X with A ∪ U = X, int(A) ∪ U = X.

Proof : (⇒) Let A be an rw-open set in X and let U be a regular semiopen with
A ∪ U = X. Then C(A) ∩ C(U) = ∅ implying that C(A) ⊆ U . Since C(A) is
rw-closed, C(A) ⊆ U . Hence C(U) ⊆ C(C(A)). But C(C(A)) = int(A). Thus
C(U) ⊆ int(A). Therefore, int(A) ∪ U = X.
(⇐) Let U be a regular semiopen set such that C(A) ⊆ U . Then
C(A) ∩ C(U) = ∅ implying that A ∪ U = X. By hypothesis, int(A) ∪ U = X
implies that C(U) ⊆ int(A) = C(C(A)) so that C(A) ⊆ U . Thus C(A) is
rw-closed. Consequently, A is rw-open. �

Theorem 3.5 Let (X, T) be a topological space and A, B ⊆ X. Then

(a) x ∈ rw-(A) if and only if for every rw-open set O with x ∈ O,
O ∩ A 
= ∅.

(b) For any set A, rw-(A)⊆ rw-(rw-(A)).

(c) If A is rw-closed, then A = rw-(A) = rw-(rw-(A)).

(d) rw-(A ∪ B) = rw-(A) ∪ rw-(B).

(e) rw-(A) ⊆ A.

(f) If A and B are subsets of X with A ⊆ B, then rw-(A) ⊆ rw-(B).
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4 rw-continuous Functions

Theorem 4.1 Every continuous function is rw-continuous.

Proof : Let X and Y be topological spaces and let f : X → Y be a function.
Suppose that A is any open set in Y . Since f is continuous, f−1(A) is open in
X. By Theorem 3.1(a), f−1(A) is rw-open. Thus, f is rw-continuous. �

Theorem 4.2 If f : X → Y is rw-continuous and g : Y → Z is continuous,
then g ◦ f : X → Z is rw-continuous.

Proof : Let U be open in Z. Then g−1(U) is open since g is continuous. Thus,
f−1(g−1(U)) = (g ◦ f)−1(U) is rw-open since f is rw-continuous. Therefore,
g ◦ f is rw-continous. �

Remark 4.3 The composition of two rw-continuous functions need not be
rw-continuous.

Theorem 4.4 Let X and Y be topological spaces and f : X → Y . Then f
is rw-continuous if and only if the inverse image of each closed set in Y is
rw-closed in X.

Proof : Let f be rw-continuous and let U be any closed set in Y . Then Y \U
is open. Since f is rw-continuous, f−1(Y \U) is rw-open. Now,

f−1(Y \U) = f−1(Y )\f−1(U) = X\f−1(U).

Hence, f−1(U) is rw-closed in X.
Conversely, let U be open in Y . Then Y \U is closed. By assumption,

f−1(Y \U) is rw-closed in X. Now,

f−1(Y \U) = f−1(Y )\f−1(U) = X\f−1(U).

Hence, f−1(U) is rw-open. Therefore, f is rw-continuous. �

Theorem 4.5 If f : X → Y is rw-continuous, then f(rw-(A)) ⊆ f(A) for
every A ⊆ X.

Proof : Let A ⊆ X and let x ∈ rw-(A). Suppose further that U is an open set
in Y with f(x) ∈ U . Since f is rw-continuous, f−1(U) is rw-open in X with
x ∈ f−1(U). Hence, by Theorem 3.5(a), f−1(U) ∩ A 
= ∅. It follows that

∅ 
= f(f−1(U) ∩ A) ⊆ f(f−1(U)) ∩ f(A) ⊆ U ∩ f(A).

Thus, U ∩ f(A) 
= ∅. Hence, f(x) ∈ f(A). �
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Theorem 4.6 If f : X → Y is rw-continuous, then rw-(f−1(B)) ⊆ f−1(B)
for every B ⊆ Y .

Proof : Let f : X → Y be rw-continuous. Suppose that B ⊆ Y and
A = f−1(B). Then by Theorem 4.5, f(rw-(f−1(B))) ⊆ f(f−1(B)) ⊆ B.
Thus, rw-(f−1(B)) ⊆ f−1(B). �

Definition 4.7 A function f : X → Y is called regular strongly continuous
(briefly rs-continuous) if the inverse image of every rw-open set in Y is open
in X, that is, f−1(A) is open in X for all rw-open sets A in Y .

Remark 4.8 Every rs-continuous function is rw-continuous.

Theorem 4.9 f : X → Y is rs-continuous if and only if f−1(A) is closed for
every rw-closed set A in X.

Proof : (⇒) Let f be rs-continuous and let A be rw-closed in Y . Then C(A)
is rw-open in Y . Thus, f−1(C(A)) is open since f is rs-continuous. But
f−1(C(A)) = C(f−1(A)). Hence, f−1(A) is closed.
(⇐) Let O be rw-open in Y . Then C(O) is rw-closed. By assumption,
f−1(C(O)) is closed. Thus, f−1(C(O)) = C(f−1(O)) is closed. Therefore,
f−1(O) is open implying that f is rs-continuous. �
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1. Introduction

Linear codes, well-studied objects in coding theory, have traditionally been explored
over fields or rings with unity. However, recent researches [2–4, 14] have unveiled a fasci-
nating avenue of investigation by extending the study of linear codes to non-unital rings.
For instance, Alahmadi, et al [1], introduced the notion of Quasi Self-Dual codes (QSD
codes), self-orthogonal linear codes of length n over a non-unital ring E such that the
size of the code is 2n. Moreover, there are some interesting researches in binary codes in
the literature, for instance, [15] explored the Z2-triple cycle codes and their duals, [11]
cyclic codes from a sequence over finite fields, and [6] studied self-dual codes over Rk

and binary self-dual codes. In continuation to the codes over E, Shi, Minjia, et al. [14]
presented a special construction of QSD codes over E, based on combinatorial matrices
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related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly
Regular Tournaments (DRT).

In this article, we delved into the analysis of graphs generated from linear codes over
E, called linear E-codes and examine their properties and use these concepts to formulate
a definition of graph.

Graph theory provides a powerful framework for visualizing and understanding com-
plex systems, making it an ideal tool for investigating linear codes over non-unital rings.
By associating codes with corresponding graphs, we can gain insights into the structure
and behavior of these codes, enabling us to extract valuable information related to er-
ror correction, network coding, and other areas of interest. For standard notations and
concepts in graph theory, the readers are advised to refer to [9].

In this study, we will first establish the foundations of linear codes over E, elucidating
the necessary definitions, properties, and construction methods. Next, we will introduce
the graph representation of such linear codes, by defining (k1, k2) E-torsion graph of an
E-code, and will discuss the construction of such graphs and explore the relationship
between the code’s properties and the resulting graph structure. Moreover, we will study
vertex-weighted graph to separate the isomorphic graph generated by two inequivalent
E-codes.

The study of coding theory in relation to graph theory is not well-established topic.
However, few researchers tried to focus on the subject such as graph theoretic methods
in coding theory [13], where it discusses the application of graph theory in coding theory,
and codes on graphs [8], where it developed a fundamental theory of realizations of linear
and group codes on general graphs using elementary group theory, including basic group
duality theory.

Through our comprehensive analysis of graphs produced from linear codes over the
non-unital ring E, this article seeks to contribute to the expanding field of coding the-
ory and its applications in diverse domains. By exploring the interplay between graph
theory and linear codes over non-unital rings, we strive to unlock new perspectives, in-
sights, and practical solutions that can address challenges in error correction, information
transmission, and beyond.

2. Background

2.1. Binary codes

As defined in [14], denoted by wt(x) the Hamming weight of x ∈ Fn
2 . The dual of a

binary code C is denoted by C⊥ and defined as

C⊥ = {y ∈ Fn
2 |∀x ∈ C, (x, y) = 0, }

where

(x, y) =
n∑

i=1

xiyi,
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denotes the standard inner product. A code C is self-orthogonal if it is included in
its dual:

C ⊆ C⊥.

Two binary codes are equivalent if there is a permutation of coordinates that maps one
to the other.

2.2. Ring Theory

We describe the main properties of the ring E of order four. The ring E is defined by
the relations on two generators a, b and we shall write

c = a+ b

for the given ring.
The ring E is defined by

E = ⟨a, b|2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b⟩.

It is a non-unital ring and non-commutative ring with characteristic two. For more
details refer to [3, 7, 12]. The ring is local with maximal ideal {0, c}. Its multiplication
table is given in Table 1.

× 0 a b c

0 0 0 0 0

a 0 a 0 0

b 0 b b 0

c 0 c c 0

Table 1: Multiplication table for the ring E

From Table 1, it is clear E is not commutative, and non-unital. It is local with the
maximal ideal

J = {0, c},
and residue field

E/J = F = {0, 1},
the finite filed of order 2.

If we denote
α : E → E/J = F2,

the map of reduction modulo J . It follows that

α(0) = α(c) = 0,

and
α(a) = α(b) = 1.

This function α is extended in the natural way in a map from En to Fn
2 . Readers who

wanted further details on the properties of ring R, we refer the readers to [1–3, 10].
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2.3. Codes over E

A linear E-code of length n is a one-sided E-submodule of En. Let C be a code of
length n over E. With the code, there are two binary codes of length n:

(i) the residue code defined by res(C) = {α(y)|y ∈ C},

(ii) the torsion code defined by tor(C) = {x ∈ Fn
2 |cx ∈ C}.

The right dual C⊥R of C is the right module defined by

C⊥R = {y ∈ En|∀x ∈ C, (x, y) = 0}.

The left dual C⊥R of C is the left module defined by

C⊥L = {y ∈ En|∀x ∈ C, (y, x) = 0}.

An E-code C is self-orthogonal if

∀x, y ∈ C, (x, y) = 0.

It follows that C is self-orthogonal if and only if

C ⊆ C⊥L .

Similarly, C is self-orthogonal if and only if

C ⊆ C⊥R .

Hence, for a self-orthogonal code C, it satisfies that

C ⊆ C⊥L ∩ C⊥R .

An E−code of length n is Quasi Self-Dual (QSD for short) [14] if it is self-orthogonal
and of size 2n. A quasi-self dual code is Type IV if all its codewords have even weight
[5].

3. Some results in linear E-codes

3.1. Linear E-codes

Definition 1. [3] Let C be a linear E-code. Then C is a type-(k1, k2) code if

dim(res(C)) = k1

and
dim(tor(C)) = k1 + k2.
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Theorem 1. [3] Let B be a self-orthogonal binary code of length n. The code C defined
by the relation

C = aB + cB⊥,

is a quasi self-dual code. Its residue code is B and its torsion code is B⊥.

Corollary 1. [3] Let B and B′ be a binary code of length n such that B is self-orthogonal
and B ⊆ B′. Then C is a linear E-code defined by the relation

C = aB + cB′.

4. Results in (k1, k2) E-torsion graph of an E-code

Definition 2. Let C be a linear E-code and B′ be the torsion code of C. Then the simple
graph GEC such that the vertex set

V (GEC) = B′

and
xy ∈ E(GEC),

the edge set and x ̸= y, if
ax+ cy ∈ C

or
ay + cx ∈ C,

is called the (k1, k2) E-torsion graph of C.

To avoid the confusion to whether the binary code is viewed as a codeword in tor(C)
or vertex in GEC , we denote the vertex x̂ which corresponds to the codeword x. This
means that if

x ∈ tor(C),

then
x̂ ∈ V (GEC).

Example 1. Let
C = aB + cB′

where
B = ⟨1100⟩

and
B′ = ⟨1100, 0011⟩ .

This means that
V (GEC) = {0̂000, 1̂100, 0̂011, 1̂111}.

By computation, we get

E(GEC) = {(0̂000, 1̂100), (0̂000, 0̂011), (0̂000, 1̂111), (1̂100, 0̂011), (1̂100, 1̂111)}.

Thus, the (k1, k2)-torsion graph of C, GEC , is illustrated in Figure 1.
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Figure 1: (k1, k2) E-torsion graph of C

Theorem 2. If C is a type-(k1, k2) of an E-code, then

|V (GEC)| = 2k1+k2

and

|E(GEC)| =
2k1∑
i=1

2k1+k2 − i.

Proof. The equation
|V (GEC)| = 2k1+k2

follows from the fact that the torsion of a type-(k1, k2) E-code has dimension k1 + k2. On
the other hand, from the definition of E(GEC),

E(GEC) = {(x̂, ŷ) : x ∈ res(C), y ∈ tor(C)},

that is, each of the 2k1 elements of the residue will be connected by an edge to the

2k1+k2 − 1

elements of the torsion. We can enumerate the edges by starting at an element in the
residue with 2k1+k2 − 1 edges containing that element, then if there is another element of
the residue, we will enumerate the 2k1+k2 − 2 edges containing the second element, since
there is one edge common to the set of edges containing the first element and set of edges
containing the second element, hence the second set of edges is 1 less than the previous
set of edges. We continue the process by subtracting 1 from the number of the previous
set of edges. Using this algorithm, the number of distinct pairs would be

2k1∑
i=1

2k1+k2 − i.

■
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Corollary 2. Let x̂ ∈ V (GEC). If x ∈ res(C), then

deg(x̂) = 2k1+k2 − 1.

If x /∈ res(C), then
deg(x̂) = 2k1 .

Proof. The proof follows from Theorem 2. ■

Corollary 3. If C is a type-(k1, k2) E-code, then

|E(GEC)| = 22k1+k2 − 22k1−1 − 2k1−1.

Proof. The proof follows directly from Corollary 2. ■

Lemma 1. r(GEC) = 1.

Proof. If x ∈ res(C), then the eccentricity of x̂ is 1 since x̂ is connected by an edge to
every vertex in GEC . If x /∈ res(C), then the eccentricity of x̂ is 2 since every vertex in
GEC is connected through a vertex in res(C) to all other vertex not in res(C). Therefore,

r(GEC) = 1.

■

Lemma 2. Let GEC ̸= P2, path of order 2. If there exists x /∈ res(C), then there exists
y ̸= x such that y /∈ res(C).

Proof. Let x /∈ res(C). Then

|res(C)| < |tor(C)| .

This means k1 < k1 + k2, that is, k2 > 0. Now,

|tor(C)| − |res(C)| = 2k1+k2 − 2k1 = 2k1
(
2k2 − 1

)
.

Note that if k1 = 0 and k2 = 1, GEC ̸= P2, which is a contradiction. Thus,

2k1
(
2k2 − 1

)
≥ 2.

■

Theorem 3. Let C be an E-code and GEC be the (k1, k2) E-torsion graph of C which is
not P2. Then vertex x̂ ∈ C(GEC) if and only if x ∈ res(C).
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Proof. Let x̂ ∈ C(GEC). Suppose x /∈ res(C). Then, by Lemma 2 there exists
y ∈ tor(C) such that both

ax+ cy

and
ay + cx

not in C. It follows that eccentricity of x̂ is greater than 1, a contradiction that x̂ ∈
C(GEC) by Lemma 1.
Conversely, suppose x ∈ res(C). Then x̂ is connected by an edge to every vertex in GEC .
Thus, the eccentricity of vertex x̂ is 1, that is, x̂ ∈ C(GEC). ■

4.1. (k1, k2) E-torsion graph of QSD codes

Quasi self-dual codes are classified in [3] using their residue codes. But since every
residue code corresponds to a unique torsion code, the study of the structure of GEC of a
QSD code will be concentrated in this section.

Example 2. Let
C = aB + cB⊥,

where
B = ⟨1100, 0011⟩ .

Then
B⊥ = ⟨1100, 0011⟩

By Theorem 1, C is a QSD code.

V (GEC) = {0̂000, 1̂100, 0̂011, 1̂111}.

By Corollary 3,
|E(GEC)| = 16− 8− 2 = 6,

that is, GEC is a complete graph.

Theorem 4. Let GEC be the (k1, k2) E-torsion graph of a QSD code

C = aB + cB⊥

where B is a binary code. Then B is self-dual if and only if GEC is a complete graph.

Proof. Let B be self-dual. Then

res(C) = tor(C).

By Corollary 2, the degree of every vertex of GEC is

2k1+k2 − 1,
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that is, GEC is a complete graph.
Conversely, suppose that GEC is a complete graph. Let x ∈ tor(C). Then

(x̂, ŷ) ∈ E(GEC)

since GEC is complete. It follows that

ax+ cy ∈ C

for all
y ∈ tor(C).

Applying α, we have x ∈ res(C), that is,

tor(C) ⊆ res(C).

■

Corollary 4. If C is a QSD code of type-(k1, 0), then GEC is a complete graph.

Theorem 5. If C is a QSD code of type-(0, k2), then GEC is a star graph.

Proof. If k1 = 0, then res(C) is the trivial code which contains only the zero vector.
It follows that

tor(C) = Fn
2 .

Hence,
E(GEC) = {(0̂v, x̂) : x ∈ Fn

2}.

■

Remark 1. Let k1, k2 ∈ Z+ and C1, C2 be type-(k1, k2) linear E-codes. Then

GEC1
∼= GEC2 .

Looking at Remark 1, (k1, k2) E-torsion graph alone cannot be used to classify QSD
codes since two inequivalent codes under the same type-(k1, k2) code have the same (k1, k2)
E-torsion graph. So to separate these two inequivalent QSD codes, we use the concept of
vertex-weighted graph which is defined in the following.

Definition 3. The vertex-weighted (k1, k2) E-torsion graph of a QSD code is the
vertex-weighted graph where the weight of a vertex x ∈ GEC is the weight of the codeword
wt(x) of x ∈ tor(C).

Example 3. Let
C1 = aB1 + cB⊥

1

and
C2 = aB2 + cB⊥

2
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where
B1 = ⟨1100⟩

and
B2 = ⟨1111⟩ .

Note that C1 and C2 are two nonequivalents E-codes. Now,

V (GEC1) = {0̂000, 1̂100, 0̂010, 1̂110, 0̂001, 1̂101, 0̂011, 1̂111}

and
V (GEC2) = {0̂000, 1̂111, 1̂100, 0̂011, 0̂110, 1̂001, 1̂010, 0̂101}.

Figure 2 shows the graph representation of GEC1:

Figure 2: (k1, k2) E-torsion graph of GEC1

Furthermore, Figure 3 is the graph representation of graph GEC2.

Figure 3: (k1, k2) E-torsion graph of GEC2

Note that the two graphs are isomorphic. However, if we look at the vertex-weighted
graph of GEC1 and GEC2 , respectively, (see Figure 4 and 5) using the weights of every
codeword, we see the difference between these two vertex-weighted (1, 2) E-torsion graphs.
Hence, two codes can have isomorphic graphs but different vertex-weighted (k1, k2) E-
torsion graphs.
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Figure 4: (k1, k2) E-torsion graph of GEC1

Figure 5: (k1, k2) E-torsion graph of GEC2

5. Vertex-weighted (k1, k2) E-torsion graph of QSD codes with n ≤ 4

Quasi self-dual E-codes of short length were classified in [3]. In this section, we will
illustrate those QSD codes using their vertex-weighted (k1, k2) E-torsion graphs up to
n = 4.

5.1. (k1, k2) E-torsion graph of QSD codes for n=2.

For
C1 = a ⟨00⟩+ c ⟨10, 01⟩ ,

we have a (0, 2) E-torsion graph which is illustrated in Figure 6.

Figure 6: Vertex-weighted (k1, k2) E-torsion graph of C1
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For
C2 = a ⟨11⟩+ c ⟨11⟩ ,

we have a (1, 0) E-torsion graph which is illustrated in Figure 7.

Figure 7: Vertex-weighted (k1, k2) E-torsion graph of C2

5.2. (k1, k2) E-torsion graph of QSD codes for n=3.

For
C3 = a ⟨000⟩+ c ⟨100, 010, 001⟩ ,

we have a (0, 3) E-torsion graph which is illustrated in Figure 8.

Figure 8: Vertex-weighted (k1, k2) E-torsion graph of C3

5.3. (k1, k2) E-torsion graph of QSD codes for n=4.

For
C5 = a ⟨0000⟩+ c ⟨1000, 0100, 0010, 0001⟩ ,

we have a (0, 4) E-torsion graph which is illustrated in Figure 10.
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For
C4 = a ⟨101⟩+ c ⟨101, 010⟩ ,

we have a (1, 1) E-torsion graph which is illustrated in Figure 9.

Figure 9: Vertex-weighted (k1, k2) E-torsion graph of C4

Figure 10: Vertex-weighted (k1, k2) E-torsion graph of C5

For
C6 = a ⟨1100⟩+ c ⟨1100, 0010, 0001⟩ ,

we have a (1, 2) E-torsion graph which is illustrated in Figure 11.

Figure 11: Vertex-weighted (k1, k2) E-torsion graph of C6
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For
C7 = a ⟨1111⟩+ c ⟨1111, 1100, 0110⟩ ,

we have a (1, 2) E-torsion graph which is illustrated in Figure 12.

Figure 12: Vertex-weighted (k1, k2) E-torsion graph of C7

For
C8 = a ⟨1100, 0011⟩+ c ⟨1100, 0011⟩ ,

we have a (2, 0) E-torsion graph which is illustrated in Figure 13.

Figure 13: Vertex-weighted (k1, k2) E-torsion graph of C8
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6. Conclusion

In this paper, we studied the (k1, k2) E-torsion graph of a type-(k1, k2) E-codes. In
particular, the size of the set of vertices and set of edges. We also characterized (k1, k2)
E-torsion graph when k1 = 0 and k2 = 0 and introduced the notion of vertex-weighted
(k1, k2) E-torsion graph to differentiate inequivalent QSD codes of the same type. Finally,
we were able to represent QSD codes which were classified in [3] up to n = 4 using the
vertex-weighted (k1, k2) E-torsion graph. By defining a (k1, k2) E-torsion graph G such
that the V (G) = 2k1+k2 , there are 2k1 vertices that have degree 2k1+k2 − 1 with the rest
vertices, if there exist, have degree 2k1 . For future study, after graph operations of two
(k1, k2) E-torsion graphs is a (k1, k2) E-torsion graph? Also, one can explore center of
(k1, k2) E-torsion graphs and the dominating sets of (k1, k2) E-torsion graphs.
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