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ABSTRACT

Innovative Graph Theoretical Models: FromE-Torsion to Roman Domination and Function-Based
Convexity
Project members: Leonard M. Paleta, PhD

Philip Lester P. Benjamin, PhD

Jupiter G. Pilongo, MS

Abstract.

This research explores three novel graph constructions that bridge distinct mathematical
disciplines: the generalized e-torsion graph, convex graphs generated by a function and a finite set,
and forcing perfect domination in graphs.

In 2024, the notion of (k1, k2) E-torsion graph was first introduced by Pilongo, et. al. They used the
graph to represent type-(k1, k2) linear codes over the non-unital ring E. However, such graphs have
few examples on small order graphs. In this paper, we will introduce (n, k) torsion graph, a
generalization of (k1, k2) E-torsion graph, defined to be a graph G such that |V (G)| =n + k wheren
vertices have n + k-1 degrees and the k vertices have degree n. Since the order of the graph is not
limited only to a power of 2 we can generate more graphs with smaller order that have the same
properties as (k1, k2) E-torsion graph. We will also formulate result which immediately follows from
the definition such as the behavior of central vertices and the number of edges. This study will also
introduce a unary operation of a graph and binary operation of two graphs in order to construct an
(n; k) torsion graph. We also provide one of the applications of the (n; k) torsion graph which is the
Student-Proctor Communication Model.

The second research introduces a novel class of graphs termed "convex graphs generated by a
function and a finite set," denoted as G(f,A). Unlike traditional graph convexity definitions that rely
on intrinsic graph properties like paths or intervals, G(f,A) derives its structure extrinsically. Its
vertex set is a finite subset of a function's domain, and an edge exists between two vertices if the
underlying continuous function exhibits convexity along the segment connecting their
corresponding domain points. Key properties of these graphs and some theorems were discussed.

Lastly, we introduced and explored the concept of forcing perfect domination number of graphs
(fypG). Building upon the concept of a perfect dominating set—a subset of vertices where every
vertex in the graph is dominated by precisely one vertex from the set—this novel graph invariant
quantifies the uniqueness of such optimal dominating configurations. The fypG measures the
minimum cardinality of a subset required to uniquely identify a minimum perfect dominating set

(vp-set).

The study elucidates the definition of fypG through illustrative examples, demonstrating its

variability. For instance, a graph with multiple minimum perfect dominating sets, like C4, exhibits a

higher fypG (e.g., 2), indicating that more information is needed to distinguish among optimal

solutions. Conversely, a graph possessing a unique minimum perfect dominating set yields an fypG

of 0, signifying inherent and unambiguous identifiability of its optimal structure. This parameter

offers a quantitative measure of the determinism and structural rigidity of graphs concerning their
2



perfect domination, providing insights into the inherent properties of graph structures and
potentially influencing algorithmic design for optimal solution identification and network
robustness assessment.

Keywords: generalized E-torsion graphs, forcing perfect domination, convex graphs
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B. TECHNICAL DESCRIPTION

1.

Rationale / Significance

Rationale

Graph theory is one of the growing research areas in the literature of mathematics since it was first
introduced by a great mathematician named Leonhard Euler regarding the problem in his published
work involving the Seven Bridges of Konigsberg (Armada & Canoy, 2019). In simple terms, a graph in
mathematics represents a network of points connected by lines, showing how they are related. The
points are called vertices, and the lines between them are edges. Domination in graphs is a well-known
and rapidly growing part of graph theory, with many practical uses (Paleta & Jamil, 2021). For example,
it can help solve problems like finding the best bus routes for schools, locating army posts efficiently,
designing computer networks, and planning radio station placements. Studying domination in graphs
can also help us understand social networks and how relationships between people change over time
in different fields. There are many different types of domination, one of which is perfect Roman
domination. This concept is useful for solving problems like where to place facilities, how to design
communication networks, and how to manage limited resources. On the other hand, the notion of
forcing numbers originated from the study of molecular resonance structures, initially introduced by
Klein and Randi¢, and later explored by other mathematicians (Calanza & Rara, 2022). The study of
domination in graphs, including perfect Roman domination and forcing subsets, not only enriches the
theoretical aspects of graph theory but also finds wide-ranging practical applications in various fields,
making it a compelling area for further research and exploration.

Moreover, the concept of vertex-weighted E-torsion graphs represents a specialized area within this
field, providing unique insights into graph structures with specific properties.

These structures allow for the analysis and optimization of various systems, making them invaluable in
fields such as transportation planning, telecommunications, and social network analysis. By leveraging
the power of vertex-weighted E-torsion graphs, researchers and practitioners can uncover hidden
patterns, optimize system performance, and make informed decisions for resource allocation and
network design. Furthermore, the use of vertex-weighted E-torsion graphs in these applications can
lead to more efficient and effective solutions, ultimately improving productivity and enhancing the
overall quality of various systems and networks. In summary, vertex-weighted E-torsion graphs have
profound implications for real-world applications in network analysis, computer science, and
combinatorial optimization (Priyadarsini, 2015).

On the other hand, the concept of a convex graph induced by a function and a finite set is a novel and
intriguing idea that has the potential to significantly advance our understanding of convexity and its
applications across various mathematical disciplines. The properties and behavior of such graphs could
lead to new insights and connections, particularly in the areas of optimization, geometry, and network
analysis.
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One of the primary benefits of exploring convex graphs is the potential to generalize the concept of
convex sets. Convex sets are a fundamental concept in many mathematical fields, including
optimization and geometry. By representing convex sets using graphs, this research could provide a
framework for understanding and analyzing complex data with inherent convexity structures. This
could lead to new tools and techniques for solving optimization problems involving convex sets, which
would be particularly valuable in fields like machine learning and data analysis.

Furthermore, the concept of convex graphs could offer a new approach to representing and analyzing
problems involving convexity. This might lead to the development of more efficient algorithms for
tasks like finding minimum or maximum values in convex sets. The graph structure could also be
leveraged to model and analyze specific network dynamics related to convexity properties, which could
be crucial in understanding complex systems and networks.

The potential applications of convex graphs are vast and diverse. In data visualization, representing
convex sets through graphs could provide a more intuitive and visual way to understand and analyze
complex data. This could be particularly useful in fields like finance, economics, and social network
analysis, where understanding the relationships and patterns within large datasets is crucial.

In conclusion, the investigation of convex graphs induced by functions and finite sets holds significant
promise for advancing our understanding of convexity, developing new algorithms, and bridging
connections across different mathematical disciplines. The potential benefits of this research are
numerous, and it is likely to have a lasting impact on the fields of optimization, geometry, and network
analysis.

Significance

This project aims to advance the field of graph theory by introducing and exploring the concept of
convex graphs. The expected outcomes of this research are likely to have significant impacts on both
theoretical and applied mathematics.

Objectives (State the General Objectives and Specific Objectives)

General Objective: Introduce and investigate the concepts of generalized E-Torsion graphs, forcing
subsets of Perfect Roman Domination in Graphs, and convex graphs generated by a function and a
finite set.

Specific Objectives:

1. Introduce the concepts of generalized E-Torsion graphs, Forcing subsets of Perfect Roman
Domination in Graphs, and convex graphs generated by a function and a finite set.

2. Discuss their basic properties.
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3. Investigate the concepts of generalized E-Torsion graphs, forcing subsets of Perfect Roman
Domination in Graphs, and convex graphs generated by a function and a finite set of some graph
operations.

4. Provide applications of these type of graphs.

2. Review of Related Literature
This section presents some of the related literature of the study.
2.1. Generalized E-Torsion Graphs
2.1.1 Thering E and E-Codes

The theoretical underpinnings of generalized e-torsion graphs are deeply rooted
in abstract algebra, specifically ring theory and coding theory. These graphs
are constructed from linear codes defined over a unique non-unital ring, denoted
as E. The ring E is characterized by specific relations: E = (a,b|2a = 2b =
0,a®> = a,b*> = b,ab = a,ba = b). Notably, E is a non-unital ring, meaning
it lacks a multiplicative identity, and it is non-commutative, where the order
of multiplication affects the result. It also has a characteristic of two, implying
that adding any element to itself yields the additive identity. The multiplication
table of E further illustrates its non-commutative and non-unital nature. E is
a local ring with a unique maximal ideal J = {0,c}, where ¢ = a + b, and its
residue field E/J is the finite field F» [17]. The absence of a unity element in
this ring presents challenges for traditional concepts like self-duality [1].

Linear E-codes are defined as one-sided E-submodules of E™, where n is the
code length [17]. Associated with any E-code C are two crucial binary codes:

¢ Residue Code (res(C)): This code is formed by applying a homomor-
phism « : E — E/J = F5 to the elements of C, reducing them modulo
the maximal ideal J [17].

e Torsion Code (tor(C)): This code consists of elements z € F3' such
that cx € C, where ¢ = a + b from ring E. It captures elements exhibiting
"torsion” behavior relative to the ring structure [17].

These codes are fundamental in coding theory, particularly in the study of self-
orthogonal and quasi self-dual (QSD) codes. An E-code C is self-orthogonal if
the inner product of any two codewords in C is zero, meaning C is contained
within its right and left duals (C' C C+F'n C+7) [17]. A QSD code is a self-
orthogonal E-code with a size of 2™ [17]. A Type IV code is a specialized
QSD code where all codewords have an even Hamming weight [1, 17]. These
definitions highlight the complex algebraic environment from which e-torsion
graphs emerge, pushing the boundaries of conventional coding theory.

2.1.2 Definition and Construction of (k1, k2) E-Torsion Graphs
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The (k1,k2) E-torsion graph, denoted as Gg¢c, provides a graph-theoretic rep-
resentation derived from linear E-codes [17]. This construction bridges abstract
algebraic properties with visual and structural insights.

The graph’s components are defined as follows:

e Vertex Set: The vertices of Gg¢ are the binary codewords of the torsion
code of C [17]. For a QSD code C' = aB+cB™, the vertices are specifically
elements of the torsion code B+ [17].

o Edge Set: Edges in Ggc are defined based on the construction rules of
E-codes, meaning the algebraic relationships within the E-code structure
dictate the graph’s topology [17].

This graph construction is presented as a powerful framework for visualizing and
understanding complex systems related to linear codes over non-unital rings,
facilitating insights into error correction and network coding [17]. The direct
mapping from algebraic structures to a graph allows for a more intuitive under-
standing of code structure and behavior, aiding in extracting valuable informa-
tion for error correction, network coding, and other relevant areas [17].

2.1.3 Key Properties and Characteristics of (k1,k2) E-Torsion Graphs

Researchers have begun to systematically characterize the structural properties
of (k1,k2) E-torsion graphs. For instance, when k; = 0 and k2 = 0, specific
graph characteristics, including vertex degrees and the total number of edges,
have been precisely calculated [17].

Necessary and sufficient conditions have been established for a vertex to be
in the center of the graph, directly linking these conditions to the algebraic prop-
erties of the corresponding codeword [17]. To further differentiate and analyze
these graphs, a vertex-weighted (k1,k2) E-torsion graph has been intro-
duced. In this variant, each vertex is assigned a weight equal to the Hamming
weight of its associated codeword from the torsion code. This weighting helps
distinguish between isomorphic graphs generated by algebraically inequivalent
E-codes, providing a finer tool for code classification [17].

A significant finding is that if the binary code B (from which the QSD code
C = aB + ¢B* is constructed) is self-dual, then the corresponding (k1,k2)
E-torsion graph Ggc is a complete graph [17]. This establishes a direct link
between an algebraic property (self-duality) and a fundamental graph-theoretic
property (completeness) [17].

2.2. Forcing Subsets of Perfect Roman Domination in Graphs

The concept of domination in graphs has numerous variations, including Roman domination and its
perfect variant. This section introduces the definitions of perfect Roman domination and then
discusses the concept of forcing subsets as applied to Roman dominating sets.
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A dominating set S of a graph G is defined as perfect if each vertex of G is
dominated by exactly one vertex in S [6]. The perfect domination number
7p(G) is the minimum cardinality of a perfect dominating set of G. A perfect
dominating set S with |S| = ~,(G) is called a v,-set of G [6].

The study of perfect dominating sets has explored their existence and con-
struction in various graph families, including trees, dags, and series-parallel
graphs [6]. Determining if an arbitrary graph has a perfect dominating set is
an NP-complete problem, even when restricted to 3-regular planar graphs [6].

Further research has investigated the perfect dominating polynomial, which
is constructed by identifying families of perfect dominating sets with given car-
dinalities [20]. Variations such as the perfect Italian domination number have
also been introduced, exploring relationships with other domination parameters

[4]. The existence of perfect (1,2)-dominating sets has been investigated
in graphs with specific maximum degrees, noting that graphs with such sets
may exhibit symmetric structures [13]. Another variant, the perfect isolate
dominating set, combines properties of perfect and isolate dominating sets,
with its minimum cardinality denoted by 7,0(G) [3].

2.2.1 Perfect Roman Domination

A perfect Roman dominating function (PRDF) on a graph G is a function
f:V(G) — {0,1,2} satisfying the condition that every vertex u with f(u) =0
is adjacent to exactly one vertex v for which f(v) = 2 [10, 12, 16]. The weight
of a perfect Roman dominating function f, denoted w(f), is the sum of the
weights of the vertices, w(f) = ZUGV(G) f(v) [10, 12, 16]. The perfect Roman
domination number of G, denoted 7, zr(G), is the minimum weight of a perfect
Roman dominating function in G [10, 12, 16]. A PRDF f with w(f) = v,r(G)
is called a 7, g-function [16].

2.2.2 Forcing Subsets of Roman Dominating Sets

Building on the concept of Roman domination, the notion of forcing subsets
has been introduced to quantify the uniqueness of minimum Roman dominat-
ing functions. The concept of forcing domination was initially introduced by
Chartrand et al. for general dominating sets [9]. This idea was later extended
to Roman domination [18].

A Roman dominating function (RDF) f on a graph G = (V,E) can be
represented by a set of ordered pairs Sy = {(v, f(v)) : v € V} [18]. A subset T
of Sy is called a forcing subset for Sy if Sy is the unique extension of T" to a
vr(G)-function (a Roman dominating function with minimum weight) [18].

The forcing Roman domination number of Sy, denoted f(Sy,vr), is
defined as the minimum cardinality of such a forcing subset for Sy: f(Sf,vr) =
min{|T| : T is a forcing subset of Sy} [18].

The forcing Roman domination number of G, denoted f(G,yR), is then
defined as the minimum value among all f(Sy,vg) for every vr(G)-function f
of G: f(G,yr) = min{f(Sf.yr) : f is a yr(G)-function} [18]. It is clear that

This concept quantifies the degree of uniqueness of optimal Roman domi-
nating configurations within a graph.
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2.3 Convex Graphs generated by a Function and a Finite Set
2.3.1 Foundational Concepts in Convex Analysis

Convex graphs generated by a function and a finite set draw their fundamental principles from
convex analysis, a rich area of mathematics with widespread applications [2, 7]. At its core is the
concept of a convex function.

Definition of Convex Functions: In mathematics, a real-valued function
f is defined as convex if, for any two points a and b in its domain and any ¢ €,
the line segment connecting the points (a, f(a)) and (b, f(b)) on the function’s
graph lies above or on the graph of f itself. Formally, this property is expressed
by the inequality: f(at+ (1 —¢)b) < tf(a)+ (1 —1t)f(b) [14, 15]. Geometrically,
the graph of a convex function consistently curves upwards, resembling a ”cup”
shape.

Key Properties of Convex Functions:

e Preservation under Operations: Convex functions exhibit desirable
closure properties under common mathematical operations. For instance,
the sum of two convex functions is also convex. Similarly, multiplying
a convex function by any non-negative scalar results in another convex
function. Linear (or more precisely, affine) functions represent a special
case, as they are simultaneously both concave and convex.

e Differentiability Criterion: For functions that are twice-differentiable,
convexity can be conveniently characterized by the sign of their second
derivative. A twice-differentiable function is convex if and only if its second
derivative is non-negative across its entire domain (f”(x) > 0). This
criterion provides a practical and widely used test for verifying convexity.

e Optimization Significance: Convex functions play a profoundly cru-
cial role in optimization theory due to their highly desirable properties.
A key advantage is that any local minimum of a convex function is guar-
anteed to be a global minimum, significantly simplifying the search for
optimal solutions. Furthermore, a strictly convex function defined on an
open set possesses at most one global minimum, which further streamlines
optimization problems by ensuring uniqueness of the solution [2, 14, 15].

2.3.2 Related Notions of Graph Convexity

The term ”convexity” in graph theory is not monolithic; it encompasses various
definitions, most of which are intrinsic to the graph structure itself.
Traditional Graph Convexity Definitions:

e Geodesic (g-) convexity: A subset S of vertices in a graph G is con-
sidered g-convex if it contains all vertices lying on any shortest path
(geodesic) between any pair of vertices in S [5].

e Monophonic (m-) convexity: A set S is m-convex if it contains every
vertex that lies on any induced path between vertices in S [8].

e Convex Geometry: A ”convexity” on a set of vertices V (defined as a
family of subsets called convex sets) forms a convex geometry if it satisfies
the Krein-Milman property. This property states that every convex set is
the convex hull of its extreme points [8]. For example, the monophonic
alignment of a graph is a convex geometry if and only if the graph is
chordal [8].
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e Convex Partitions: A graph G is said to be p-convex if its vertex set
can be partitioned into p convex sets [5]. Deciding whether a graph is
p-convex for a fixed integer p > 2 is an NP-complete problem, indicating
its computational complexity [5].

3. Methodology

This study employs a structured and rigorous approach to explore and expand the understanding of
convex graphs, generalized E-Torsion graphs, and related graph-theoretical concepts such as forcing
subsets of perfect Roman domination. The methodology is divided into several key steps, ensuring a
comprehensive exploration and formulation of new mathematical results.

The first step involves an extensive literature review to gather relevant information and previous
studies related to convex graphs, generalized E-Torsion graphs, domination theory, and graph theory
in general. This review will:

- Identify gaps in current research.
- Provide context for the theoretical foundation of the study.

- Ensure that any new results are grounded in existing theory, while extending beyond current
knowledge.

Key sources include academic journals, conference papers, textbooks, and relevant online databases
that cover graph theory and its applications in optimization, network analysis, and geometry. Once the
literature review is complete, the study will focus on the development of mathematical proofs. Both
direct and indirect proof techniques will be employed to explore various properties of convex graphs,
generalized E-Torsion graphs, and forcing subsets of perfect Roman domination. This step involves
establishing the truth of propositions by logical reasoning and known results or utilizing contradiction,
contraposition, or induction where necessary to explore less straightforward properties and
relationships. This process ensures that each new result is rigorously proven and builds upon prior
results in graph theory.

Based on the proofs developed, the next step is the formulation of new theorems, propositions,
corollaries, and lemmas. These elements will serve as the foundation for presenting new results in the
study. Each result will be carefully reviewed to ensure consistency, logical soundness, and
mathematical rigor.

Once the theorems and proofs are fully developed, a clear and comprehensive framework for
presenting the results will be established. This framework ensures that the results are communicated
effectively and logically. The final step of the methodology involves compiling all the components into

10
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a coherent, well-structured written report. Moreover, outputs of this research will be published to
journals in mathematics indexed in Web of Science or Scopus.

4. Results and Discussion

This section elaborates on the core concepts of forcing perfect domination and introduces the novel concept
of the forcing perfect domination number, providing detailed examples to illustrate their definitions and
implications.

4.1 Forcing Perfect Domination

Definition 1: A dominating set S of a graph G is perfect if each vertex of G is dominated by exactly one vertex
in S. The perfect domination number y,,(G) is the minimum cardinality of a perfect dominating set of G. A
perfect dominating set S with |S| = y,,(G) is called a y,-set of G.

Example 1: Consider the graph G in Figure 1.

a0 Ob C

de @ i
Figure 1: A graph G of order 6

Let S; ={a,e,c}, S, ={b,e,f}, S3={a,f}, S.={d, e, f}. These sets are all dominating sets. However,
S1 is the only not a perfect dominating set because d and b are adjacent to a and b, and f is adjacentto e
and c. The minimum perfect dominating set is S3 and so y,,(G) = [S3]| = 2.

Definition 2: Let W be a y,,-set of a graph G. A subset S of W is said to be forcing subset for W if W is the
unique y,-set containing S. The forcing perfect domination number of W is given by

fvp(W) = min{|S|:S is a forcing subset for W}.
The forcing perfect domination number of G is given by

f¥p(G) = min{fy,(W): W isay, — set of G}.

Example 2: Consider the graph C, in Figure 2.

a0 Ob

11
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c© Q

Figure 2: A graph C,

Let Wy ={a,c}, W, ={a,b}, W5 ={d,c}, W, = {b,d} be the minimum perfect dominating sets of C,.
Note that the subsets {a}, {b}, {c}, {d} are NOT forcing subsets since they are contained in at least two
minimum perfect dominating sets of C,. Thus, the respective sets are forcing subsets of itself, that is, W;
itself is a forcing subset of W;, W, itself is a forcing subset of W,, Wj itself is a forcing subset of W5, and W,
itself is a forcing subset of W,. Hence, fy,(W;) = fy,(W) = fyr,(W3) = fy,(W,) = 2, so that f,(Cy) =
2.

Example 3: Consider the graph G in Figure 3.

a

b f
Figure 3: A graph G of order 6

Let W = {c, e} be the unique minimum perfect dominating set of the graph G. Note that the subsets @,
{c}, {e}, {c, e} areforcing subsets of W since they are contained in the unique minimum perfect
dominating set W of the graph G. Hence, fy,(W) = 0, so that fy,,(G) = 0.

4.2 Convex graphs induced by a function and a finite set

In this section, we introduce the concept of convex graphs induced by a function and a finite set.

Definition 2 Let f be a continuous function and A be a nonempty finite sub-
set of the domain of f, we define the convex graph induced by a function
f and a finite set A, G(f, A), to be the graph whose vertex set is A and for
a,b € A such that a < b, ab € E(G(f, A)) if for all t € [0,1]

flat+ (1 —1)b) < tf(a) + (1 —1)f(b).

Theorem 1 If f is convex, then G(f,A) is a complete graph for all finite
subset A of the domain.

Proof The proof follows from the definition of G(f, A). O

12
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Theorem 2 Let f be a smooth continuous function and A be a finite subset
of the domain. Let ~ be the relation on A such that a ~ b if and only if
ab(G(f, A)). Then ~ is symmetric and transitive.

Proof Symmetric property follows immidiately from the definition of G(f, A).
Suppose a,b,c € A and ab,bc € E(G(f, A)). Then, for all ¢t € [0, 1],

flat+(1=1)b) < tf(a)+(1—1)f(b) and f(bt+ (1—1t)c) <tf(b)+(1—1)f(c).

4.3 Generalized E-Torsion Graphs

This section discusses the concept of generalized E-Torsion graphs. Some examples and
theorems will be presented.

Definition 1. Let ki, ko € ZT. A graph G is said to be (k1 k2)-torsion graph
if |V(GQ)| = 2k1+*2 and the degree of 2% vertices is equal to 2K1+%2 — 1 while
the degree of the remaining 2¥1%2 vertices, if it exist, is equal to 2%1.

Example 2. Let k; = 2 and k2 = 1. Then (2, 1)-torsion graph has 8 vertices
where 4 vertices have degree 7 and the other 4 vertices have degree 4. We have
this graph G:

As shown in the graph, the degree of vertices a, b, ¢ and d is 7 and the degree
of vertices e, f, g and h is 4. Therefore, G is a (2, 1)-torsion graph.

Note that (ki,ks) E-torsion graph contains 2¥1t*2 vertices. This means we
have few examples for small orders of such graph. To widen the coverage of
such graph with almost the same properties, we introduce the (n,k) torsion
graph.

Definition 3. Let G be a graph and |V (G)| = n + k, where n € N and k is a
nonnegative integer. Then G is said to be a (n, k) torsion graph if there are
n vertices whose degree is n + k — 1 and there are k vertices whose degree is n.

Example 4. Consider the graph G:

13



Midyear In-house Review 2025 | UNIVERSITY OF SOUTHERN MINDANAO

olllo
o
o“‘ef

Note that n = 5 and by looking at the graph, there are 2 vertices with degree
5-1=4, or they are connected to all vertices by an edge. This means k = 2.
The rest 3 vertices have degree equal to 2 which is equal to k. Hence, G is a
generalized E-torsion graph.

Corollary 5. A generalized E-torsion graph is a connected graph.

Proof. From the definition, there are vertices that are connected to all other
vertices by an edge. Hence, it is connected. O

Theorem 6. If G is a generalized E-torsion graph of order n such that there
2
are k central vertices, then |B(G)| = 22k=k=k

Proof. Note that there are k vertices of n— 1 degree and there are n — k vertices
of k degrees. Hence, the number of edges is

k(n—1)+ (n—k)k

B@) = :
B nk — k +nk — k2
N 2

2nk — k% —k
5 .

Lemma 7. Let G be a generalized E-torsion graph. Then r(G) = 1.

Proof. Note that the k vertices of GG is connected to all other vertices by an edge.
Hence, the eccentricity of those vertices is 1. Since G is a connected graph, then

r(G) = 1. O

Proposition 8. Let G is a generalized E-torsion graph of order n and x €
V(G). Then deg(x) =n — 1 iff x is a central vertex.

Proof. x € V(G) such that deg(x) = n — 1 if and only if the eccentricity of z is
1. That happends if and only if, z € C'(G) by Lemma 7. That is if and only if
x is a central vertex. O

Corollary 9. A complete graph is a generalized E-torsion graph.
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Proof. The complete graph is a special case of generalized E-torsion graph when
n==k. |

Proposition 10. If G is a generalized E-torsion graph, then G is reqular iff G
is a complete graph.

Proof. G is regular iff n = k iff all vertices have degree equal ton — 1 iff G is a
complete graph. |

5 Build-up construction of generalized E-torsion
graph

To simplify the construction of generalized E-torsion graph, we define the fol-
lowing operation.

Definition 11. Let G and H be graphs such that C(G) and C(H) is their
respective center. Then the central join of G and H, denoted by G +- H, is
the graph such that V(G +¢ H) = V(G)UV(H) and E(G +¢ H) = E(G) U
E(HYUE(G+C(H))UE(C(G)+ H).

Example 12.

G

-9 0 ©

H
Then G +¢ H :

We can see that C(G) = {2} and C(H) = {5,6}. Using the definition of central
join of G and H, we connect the vertex 2 to every vertex in H by an edge and
the same thing happens for vertex 5 and 6 to the graph G.

Corollary 13. The central join of graphs is commutative.

Proof. Follows from the definition. O
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Theorem 14. Let G and H be generalized E-torsion graphs. Then G +¢ H 1is
also a generalized E-torsion graph.

Proof. Let |V(G)| = ni and |V (H)| = na such that |C(G)| = k1 and |C(H)| =
ko. By the definition of central join, if z € C(G), then the degree of z in G+o H
is n; +ngo — 1. Same with y € C(H). This means that there are k; + ko vertices
with degree n; + ny — 1. Suppose there exist x € V(G) — C(G), then deg(zx)
in G is kq, thus, in G +¢ H, deg(z) = ky + ko from the definition. The same
argument for if y € V(H) — C(H). Take n = n1 + ng and k = ki + k2. This
means that G +c H is also a generalized E-torsion graph. |

Corollary 15. Let G be a generalized E-torsion graph. Then G + K,, is also a
generalized E-torsion graph where K,, is a complete graph of order n.

Proof. Note that C(K,) = V(K,). Also, E(C(G)UK,) C E(G + K,). This
mean that

E(G+¢cK,) = E(G)UE(K, UE(G+C(K,)UE(C(G)UK,)
E(G)UE(K,)UE(G+ K,)UE(C(G)UK,)
E(G)UE(K,)UE(G+K,),

E(G+K,).

O

We can also construct a generalized E-torsion graph from a graph by using
the concept of subdivision of graphs. This method will use the following unary
operation of a graph.

Definition 16. Let G be a graph. Then the subdivision semi self-join of
a graph G is the graph (G),, such that V((G)ss) = Ueer @)V (SG(e, 1)) and
E((G)ss) ={zy:z#y,2 € V((G)ss) = V(G),y € V((G)ss)}-

Remark 17. V((G)ss) — V(G) is the set of new vertices obtained from the
subdivision which will be connected to all vertices of V((G)ss) while each original
vertex i1s not connected by an edge to other original vertices.

Example 18. Let G be this graph
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Then (G)ss is

S

Corollary 19. If G is a graph of order n with m edges, then (G)ss is of order

m(m—1)
2

n + m with mn + edges.

Proof. From the definition, the number of additional vertices is the number of
edges. Thus, |V ((G)ss)| = n+m. Now, note that the obtained the vertices from
the subdivision is connected by an edge to n original vertices which means we
already have mn vertices. Also, each new vertices will be connected by an edge
to m — 1 other new vertices. From that, we have w additional edges. [

Theorem 20. Let G be a graph with at least one edge. Then (G)ss is a gener-
alized E-torsion graph.

6 Graph induced by sets of the form {1,2,--- ,n}

Let A, = {1,2,--- ,n} and m < n. Then the graph G with V(G) = {4;,--- , A, }
and (A;,A;) € E(G) if and only if A; N A; C A,,, for ¢ # j, is a generalized
E-torsion graph.

7 Student-Proctor Communication Model

One of the applications of generalized E-torsion graph is creating a Student-
Proctor Communication Model. In an examination, with possibly multiple
proctors, students are not allowed to talk to their fellow students, but only
to proctors, while proctors can communicate with all of other proctors and all
students. If there are k proctors and n — k students, each proctor is connected
to n — 1 communication tools. On the other hand, each student is connected to
only k communication tools. This problem can be modelled using the following

graph:
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p’s corresponds to the proctors and s’s corresponds to the students. The com-
munication model obtained corresponds to a generalized E-torsion graph.

5. Conclusion and Recommendation

6. Accomplishment (6 Ps)

6Ps Description (example)
Publication 1 publication drafted

Patent 1 patent applied

Products 2 products (product 1, product 2)
People Services Number of people benefited
Place and Partnership MOA drafted

Policies 1 policy drafted

Indicate the accomplishment of each study of the project or each component of the study.

7. References (in APA format)
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8. Problems Met and Recommended Action

-unable to process personal services (honoraria) on schedule due to delay in SO as attachment

Recommended action: Submit request earlier for SO processing

9. Attachments:

Attachment A — Supplementary Table/Figure, Photo documentation

Attachment B- Budget Utilization

Component Allocation Utilized % Utilized
Office Supplies 6,311.16 6,311,16 100%
Other supplies 7,151.27 7,151.27 100%
Technical and scientific equipment | 40,916.45 40,916.45 100%
Representation 5,000 1,500 30%
Communication 17,600 8,800 50%
Personal Services (Honoraria) 30,000 o 0%

Total 106,978.88 64,678.88 60.46%

Attachment C - Workplan
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UNIVERSITY OF SOUTHERN MINDANAO

Kabacan, Philippines

WORK PLAN SCHEDULE

Innovative Graph Theoretical Models: From
TITLE: E-Torsion to Roman Domination and
Function-Based Convexity

College of Science and Mathematics

e D Department of Mathematics and Statistics

Study 1: Generalized E-Torsion Graph
Study Leader: Jupiter G. Pilongo, PhD

Study 2: Forcing subsets of Perfect Roman Domination in
Graphs

BROBONENT(): Study Leader: Leonard M. Paleta, PhD
Study 3: Convex Graphs induced by a Function and a Finite
Set
Study Leader: Philip Lester P. Benjamin, PhD
Total Duration (in months) | 12 Planned Start January 2025 Planned End December 2025
Schedule of Activities
Objectives Expected Outputs Activities Yeara
1% Quarter 2"! Quarter 3" Quarter 4™ Quarter
Introduce the concepts of . Search for relevant articles Define the
. . Define and provide examples of . . Search for
generalized E-Torsion graphs, ; through published journals, concepts of
. the concepts of generalized E- relevant .
Forcing subsets of Perfect R R books ) generalized E-
R Torsion graphs, Forcing subsets articles .
Roman Domination in Graphs, L Torsion graphs,
of Perfect Roman Domination in . . through .
and convex graphs generated by Literature review ; Forcing subsets
. - Graphs, and convex graphs published
a function and a finite set. of Perfect

USM-RES-Fo5-Rev.1.2020.02.18
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UNIVERSITY OF SOUTHERN MINDANAO

Kabacan, Philippines

WORK PLAN SCHEDULE

generated by a function and a
finite set.

Define the concepts of
generalized E-Torsion graphs,
Forcing subsets of Perfect
Roman Domination in Graphs,
and convex graphs.

Provide examples of generalized
E-Torsion graphs, Forcing
subsets of Perfect Roman
Domination in Graphs, and
convex graphs

journals,
books

Literature
review

Roman
Domination in
Graphs, and
convex graphs.

Provide
examples of
generalized E-
Torsion graphs,
Forcing subsets
of Perfect
Roman
Domination in
Graphs, and
convex graphs

Discuss basic properties

Basic properties are established.

Establish basic properties of
generalized E-Torsion graphs,
Forcing subsets of Perfect
Roman Domination in Graphs,
and convex graphs.

Establish basic
properties of
generalized E-
Torsion graphs,
Forcing subsets
of Perfect
Roman
Domination in
Graphs, and
convex graphs.

Investigate the concepts of
generalized E-Torsion graphs,
forcing subsets of Perfect Roman
Domination in Graphs, and
convex graphs generated by a

Provide some important
theorems.

State and prove theorems
related to generalized E-Torsion
graphs, Forcing subsets of
Perfect Roman Domination in

Graphs, and convex graphs.

State and prove
theorems
related to
generalized E-
Torsion graphs,

USM-RES-Fos-Rev.1.2020.02.18

UNIVERSITY OF SOUTHERN MINDANAO

Kabacan, Philippines

WORK PLAN SCHEDULE

function and a finite set of some
graph operations.

Forcing subsets
of Perfect
Roman
Domination in
Graphs, and
convex graphs.

Provide applications of these
type of graphs.

Applications of the graphs
introduced are provided.

Provide applications of
generalized E-Torsion graphs,
Forcing subsets of Perfect
Roman Domination in Graphs,
and convex graphs.

Provide
applications
of
generalized
E-Torsion
graphs,
Forcing
subsets of
Perfect
Roman
Domination
in Graphs,
and convex
graphs.

USM-RES-Fo5-Rev.1.2020.02.18
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is exclusively the result of my own autonomous work based on my
research and literature published, which is referenced immediately after the
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part of the work submitted has been made in an inappropriate way, whether by
plagiarizing, infringing on any third person’s copyright, or falsifying data. Finally, |
declare that no part of the REPORT submitted has been

used for any other paper in another higher education or research institution.
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Balance Brought Forward

LY VO - Istauaner
+ 2nd Quarter
+  3rd Quarter
+ &th Quarter

Total Amount Proposed

EXPENDITURE PROGRAM

MAINTENANCE & OTHER OPERATING EXPENSES (MOOE)

CAPIIAL OUILAY

ared

Travelling Expenses
Training Expenses
scholarship
Supplies & Materials
Office Supplies Expenses
Accountable Forms Expenses
Food Supplies kxpenses
Medical, Dental and Laboratory Supplies Expenses
Fuel, Oil and Lubricants Expenses
Agricultural and Marine Supplies Expenses
Textbooks and Instructional Materials Expenses
Semi-Expendable Expenses- Office Equipment
Semi-Expendable Expenses- ICT Equipment
Semi-Expendable Expenses- Medical Equipment
Semi-Expendable Expenses- Printing Equipment
Semi-Expendable Expenses- Sports Equipment
Semi-Exp Exp Technical & Scientific Equipment
Semi-Expendable Expenses- Other Equipment
Semi-Expendable Fumniture & Fixtures
Semi-Expendable Books
Other Supplies and Materials Expenses
Utility Expenses
Water Expenses
Electricity Expenses
Communication Expenses
Postage & Deliveries
Telephone Expenses
Internet Subscription Expenses
Cable, Sateliite, Telegraph and Radio Expenses
Other Professional Services
Janitorial Services
Security Services
Other General Services
Repairs and Maintenance - Infrastructure Assets
Repairs and Maintenance - Buildings and Other Structures
Repairs and Maintenance - Machinery and Equipment
Repairs and Maintenance - Transportation Equipment
Repairs and Maintenance - Fumniture and Fixtures
Repairs and Maintenance - Other Property, Plant and Equipment

Repairs and Maintenance - Semi-expendable Machinery and Equipment

RM - Semi-expendable Furniture and Fixtures

RM - Semi-expendable Other Property, Plant and Equipment
Financial Assistance/Subsidy

Taxes, Duties and Licenses

Fidelity Bond Premiums

Insurance Expenses

Other Maintenance and Operating Expenses

TOTAL MOOE

Other Land Improvements
Other Infrastructure

Buildings

School Buildings

Other Structures

Machinery

Office Equipment

ICT Equipment

Medical equipment

Printing Equipment

Sports Equipment

Technical & Scientific Equipment
Other Machinery & Equipment
Motor Vehicles

Furniture & Fixtures

Library Books

Other Property, Plant & Equipment
Patents/Copyrights

Computer Software

IOTAL CAPITAL QUILAY

GRAND TOTAL

IP LESTER P. BENJAMIN, PhD

Amount

6,311.16

031645

Ml

17,600.00
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Submitted by:
v LEONARD M.PALETA, PhD

(MR

DeparlmenlCollege/Project Head
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